Hans-Petter Hersleth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2942235/publications.pdf

Version: 2024-02-01

25 890 14
papers citations h-index

25 g-index

27 27 all docs citations

27 times ranked 1612 citing authors

#	Article	IF	CITATIONS
1	Overview of structurally homologous flavoprotein oxidoreductases containing the low Mr thioredoxin reductase-like fold – A functionally diverse group. Archives of Biochemistry and Biophysics, 2021, 702, 108826.	3.0	19
2	Thioredoxin reductase from <i>Bacillus cereus</i> exhibits distinct reduction and NADPHâ€binding properties. FEBS Open Bio, 2021, 11, 3019-3031.	2.3	3
3	The Crystal Structures of Bacillithiol Disulfide Reductase Bdr (YpdA) Provide Structural and Functional Insight into a New Type of FAD-Containing NADPH-Dependent Oxidoreductase. Biochemistry, 2020, 59, 4793-4798.	2.5	11
4	A Researchâ€inspired biochemistry laboratory module–combining expression, purification, crystallization, structureâ€solving, and characterization of a flavodoxinâ€like protein. Biochemistry and Molecular Biology Education, 2019, 47, 318-332.	1.2	1
5	Importance of Val567 on heme environment and substrate recognition of neuronal nitric oxide synthase. FEBS Open Bio, 2018, 8, 1553-1566.	2.3	1
6	The Characterization of Different Flavodoxin Reductase-Flavodoxin (FNR-Fld) Interactions Reveals an Efficient FNR-Fld Redox Pair and Identifies a Novel FNR Subclass. Biochemistry, 2018, 57, 5427-5436.	2.5	9
7	Highâ€resolution crystal structures reveal a mixture of conformers of the Gly61â€Asp62 peptide bond in an oxidized flavodoxin from <i>Bacillus cereus</i>). Protein Science, 2018, 27, 1439-1449.	7.6	6
8	Measurement of FNR-Nrdl Interaction by Microscale Thermophoresis (MST). Bio-protocol, 2017, 7, e2223.	0.4	3
9	Activation of the Class Ib Ribonucleotide Reductase by a Flavodoxin Reductase in <i>Bacillus cereus</i> . Biochemistry, 2016, 55, 4998-5001.	2.5	18
10	Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of a ferredoxin/flavodoxin-NADP(H) oxidoreductase (Bc0385) from <i>Bacillus cereus</i> Crystallographica Section F, Structural Biology Communications, 2014, 70, 777-780.	0.8	3
11	A new sample environment for cryogenic nuclear resonance scattering experiments on single crystals and microsamples at P01, PETRA III. Hyperfine Interactions, 2014, 226, 673-678.	0.5	O
12	Crystal Structure of <i>Bacillus cereus</i> Class Ib Ribonucleotide Reductase Di-iron NrdF in Complex with NrdI. ACS Chemical Biology, 2014, 9, 526-537.	3.4	20
13	Access channel residues Ser315 and Asp137 in Mycobacterium tuberculosis catalase-peroxidase (KatG) control peroxidatic activation of the pro-drug isoniazid. Chemical Communications, 2013, 49, 11650-11652.	4.1	24
14	Ribonucleotide reductase class I with different radical generating clusters. Coordination Chemistry Reviews, 2013, 257, 3-26.	18.8	54
15	Structural Characterization of <i>Nitrosomonas europaea</i> Cytochrome <i>c</i> ê552 Variants with Marked Differences in Electronic Structure. ChemBioChem, 2013, 14, 1828-1838.	2.6	9
16	Structure of the haptoglobin–haemoglobin complex. Nature, 2012, 489, 456-459.	27.8	180
17	How different oxidation states of crystalline myoglobin are influenced by X-rays. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2011, 1814, 785-796.	2.3	46
18	Tracking Flavin Conformations in Protein Crystal Structures with Raman Spectroscopy and QM/MM Calculations. Angewandte Chemie - International Edition, 2010, 49, 2324-2327.	13.8	71

#	Article	IF	CITATIONS
19	Review: Studies of ferric heme proteins with highly anisotropic/highly axial low spin (<i>>S</i> = 1/2) electron paramagnetic resonance signals with bisâ€Histidine and histidineâ€methionine axial iron coordination. Biopolymers, 2009, 91, 1064-1082.	2.4	72
20	The Influence of Xâ€Rays on the Structural Studies of Peroxideâ€Derived Myoglobin Intermediates. Chemistry and Biodiversity, 2008, 5, 2067-2089.	2.1	16
21	Reactive complexes in myoglobin and nitric oxide synthase. Inorganica Chimica Acta, 2008, 361, 831-843.	2.4	8
22	The crystal structure of peroxymyoglobin generated through cryoradiolytic reduction of myoglobin compound III during data collection. Biochemical Journal, 2008, 412, 257-264.	3.7	50
23	Crystallographic and Spectroscopic Studies of Peroxide-derived Myoglobin Compound II and Occurrence of Protonated FelV–O. Journal of Biological Chemistry, 2007, 282, 23372-23386.	3.4	53
24	Structures of the high-valent metal-ion haem–oxygen intermediates in peroxidases, oxygenases and catalases. Journal of Inorganic Biochemistry, 2006, 100, 460-476.	3.5	152
25	The Protonation Status of Compound II in Myoglobin, Studied by a Combination of Experimental Data and Quantum Chemical Calculations: Quantum Refinement. Biophysical Journal, 2004, 87, 3437-3447.	0.5	56