Emre GÜzel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2941958/publications.pdf

Version: 2024-02-01

50 papers

1,042 citations

361388 20 h-index 29 g-index

50 all docs 50 docs citations

50 times ranked

704 citing authors

#	Article	IF	CITATIONS
1	Phthalocyanine complexes with (4-isopropylbenzyl)oxy substituents: preparation and evaluation of anti-carbonic anhydrase, anticholinesterase enzymes and molecular docking studies. Journal of Biomolecular Structure and Dynamics, 2022, 40, 733-741.	3.5	22
2	1,2,3-Triazole substituted phthalocyanine metal complexes as potential inhibitors for anticholinesterase and antidiabetic enzymes with molecular docking studies. Journal of Biomolecular Structure and Dynamics, 2022, 40, 4429-4439.	3.5	24
3	Assessment of <i>inÂvitro</i> Cytotoxic, iNOS, Antioxidant and Photodynamic Antimicrobial Activities of Waterâ€soluble Sulfonated Phthalocyanines. Photochemistry and Photobiology, 2022, 98, 907-915.	2.5	7
4	Exploring of antioxidant and antibacterial properties of novel 1,3,4-thiadiazole derivatives: Facile synthesis, structural elucidation and DFT approach to antioxidant characteristics. Computational Biology and Chemistry, 2022, 96, 107618.	2.3	17
5	Preparation, antioxidant activity, and theoretical studies on the relationship between antioxidant and electronic properties of bis(thio/carbohydrazone) derivatives. Journal of Physics and Chemistry of Solids, 2022, 164, 110618.	4.0	17
6	Potential thiosemicarbazoneâ€based enzyme inhibitors: Assessment of antiproliferative activity, metabolic enzyme inhibition properties, and molecular docking calculations. Journal of Biochemical and Molecular Toxicology, 2022, 36, e23018.	3.0	14
7	Ultrasound versus Light: Exploring Photophysicochemical and Sonochemical Properties of Phthalocyanine-Based Therapeutics, Theoretical Study, and In Vitro Evaluations. ACS Applied Bio Materials, 2022, 5, 1139-1150.	4.6	32
8	Excited State and Reactive Oxygen Species against Cancer and Pathogens: A Review on Sonodynamic and Sonoâ€Photodynamic Therapy. ChemMedChem, 2022, 17, .	3.2	31
9	Determination of biological studies and molecular docking calculations of isatin-thiosemicarbazone hybrid compounds. Journal of Molecular Structure, 2022, 1264, 133249.	3.6	18
10	Dyeâ€sensitized solar cells based on zinc(II) phthalocyanines bearing 3â€pyridinâ€3â€ylpropoxy anchoring groups. Applied Organometallic Chemistry, 2021, 35, .	3.5	9
11	A versatile, divergent route for the synthesis of ABAC tetraazaporphyrins: molecularly engineered, push–pull phthalocyanine-type dyes. Journal of Materials Chemistry C, 2021, 9, 10802-10810.	5.5	11
12	Insight into the effects of the anchoring groups on the photovoltaic performance of unsymmetrical phthalocyanine based dye-sensitized solar cells. Dalton Transactions, 2021, 50, 2981-2996.	3.3	13
13	Phthalocyanines with bromobenzenesulfanyl substituents at non-peripheral position: Preparation, photophysical and photochemical properties., 2021,, 630-636.		O
14	Dyeâ€sensitized solar cells using silicon phthalocyanine photosensitizers with pyridine anchor: Preparation, evaluation of photophysical, electrochemical, and photovoltaic properties. Applied Organometallic Chemistry, 2021, 35, e6214.	3.5	7
15	Biologically active phthalocyanine metal complexes:ÂPreparation, evaluation of αâ€glycosidase andÂanticholinesterase enzyme inhibition activities, and molecular docking studies. Journal of Biochemical and Molecular Toxicology, 2021, 35, 1-9.	3.0	26
16	4,5-Diazafluorene ligands and their ruthenium(II) complexes with boronic acid and catechol anchoring groups: design, synthesis and dye-sensitized solar cell applications. Journal of Coordination Chemistry, 2021, 74, 1366-1381.	2.2	3
17	Non-aggregating zinc phthalocyanine sensitizer with bulky diphenylphenoxy donor groups and pyrazole-3-carboxylic acid anchoring group for coadsorbent-free dye-sensitized solar cells. Solar Energy, 2021, 226, 173-179.	6.1	16
18	A new series of asymmetric bis-isatin derivatives containing urea/thiourea moiety: Preparation, spectroscopic elucidation, antioxidant properties and theoretical calculations. Journal of Molecular Structure, 2021, 1239, 130495.	3.6	19

#	Article	IF	CITATIONS
19	Plasmon-enhanced dye-sensitized solar cells through porphyrin-silver nanoparticle hybrid structures: Experimental and computational studies. Journal of Power Sources, 2021, 511, 230407.	7.8	6
20	Novel approach with polyfluorene/polydisulfide copolymer binder for highâ€capacity silicon anode in lithiumâ€ion batteries. Journal of Applied Polymer Science, 2020, 137, 48303.	2.6	18
21	Phthalocyanines including 2-mercaptobenzimidazole analogs: Synthesis, spectroscopic characteristics, quantum-chemical studies on the relationship between electronic and antioxidant properties. Journal of Molecular Structure, 2020, 1202, 127259.	3.6	12
22	Insight into the effects of the donors and pi-spacers on the photovoltaic performance of quinoline and pyridocarbazole based DSSCs. Optical Materials, 2020, 106, 109974.	3.6	13
23	Low symmetry solitaire- and trans-functional porphyrazine/phthalocyanine hybrid complexes: Synthesis, isolation, characterization, and electrochemical and in-situ spectroelectrochemical properties. Synthetic Metals, 2020, 262, 116331.	3.9	12
24	Synthesis, in vitro inhibition effect of novel phthalocyanine complexes as carbonic anhydrase and paraoxonase enzyme inhibitors. Journal of Porphyrins and Phthalocyanines, 2020, 24, 1047-1053.	0.8	1
25	Evaluation of carbonic anhydrase and paraoxonase inhibition activities and molecular docking studies of highly water-soluble sulfonated phthalocyanines. Turkish Journal of Chemistry, 2020, 44, 1565-1573.	1.2	2
26	Phthalocyanines with bromobenzenesulfanyl substituents at non-peripheral position: Preparation, photophysical and photochemical properties. Journal of Porphyrins and Phthalocyanines, 2019, 23, 821-827.	0.8	6
27	Effect of new asymmetrical Zn(<scp>ii</scp>) phthalocyanines on the photovoltaic performance of a dye-sensitized solar cell. New Journal of Chemistry, 2019, 43, 14390-14401.	2.8	28
28	Unsymmetrically pyrazole-3-carboxylic acid substituted phthalocyanine-based photoanodes for use in water splitting photoelectrochemical and dye-sensitized solar cells. Solar Energy, 2019, 191, 654-662.	6.1	32
29	Role of hexyloxy groups in zinc phthalocyanines bearing sulfonic acid anchoring groups for dye-sensitized solar cells. Journal of Porphyrins and Phthalocyanines, 2019, 23, 279-286.	0.8	13
30	Novel D-π-A organic dyes for DSSCs based on dibenzo[b,h][1,6]naphthyridine as a π-bridge. Dyes and Pigments, 2019, 164, 188-197.	3.7	27
31	Comparative Electrochemistry and Electrochromic Application of Novel Binuclear Doubleâ€Decker Rare Earth Metal Phthalocyanines Bearing 4-(hydroxyethyl)phenoxy Moieties. Journal of the Electrochemical Society, 2019, 166, H438-H451.	2.9	8
32	Dual-purpose zinc and silicon complexes of 1,2,3-triazole group substituted phthalocyanine photosensitizers: synthesis and evaluation of photophysical, singlet oxygen generation, electrochemical and photovoltaic properties. RSC Advances, 2019, 9, 10854-10864.	3.6	26
33	Aminopyrazoleâ€substituted metallophthalocyanines: Preparation, aggregation behavior, and investigation of metabolic enzymes inhibition properties. Archiv Der Pharmazie, 2019, 352, e1800292.	4.1	30
34	Synthesis of tetra-substituted metallophthalocyanines: Spectral, structural, computational studies and investigation of their photophysical and photochemical properties. Polyhedron, 2019, 158, 316-324.	2.2	28
35	High Photosensitized Singlet Oxygen Generating Zinc and Chloroindium Phthalocyanines Bearing (4â€isopropylbenzyl)oxy Groups as Potential Agents for Photophysicochemical Applications. ChemistrySelect, 2019, 4, 515-520.	1.5	21
36	Thiochalcone substituted phthalocyanines for dye-sensitized solar cells: Relation of optical and electrochemical properties for cell performance. Journal of Coordination Chemistry, 2018, 71, 1606-1622.	2.2	13

#	Article	IF	CITATIONS
37	Comparative studies of photophysical and electrochemical properties of sulfur-containing substituted metal-free and metallophthalocyanines. Research on Chemical Intermediates, 2018, 44, 971-989.	2.7	16
38	Pyrazole-3-carboxylic acid as a new anchoring group for phthalocyanine-sensitized solar cells. Solar Energy, 2018, 174, 527-536.	6.1	35
39	Zinc and chloroindium complexes of furan-2-ylmethoxy substituted phthalocyanines: Preparation and investigation of aggregation, singlet oxygen generation, antioxidant and antimicrobial properties. Synthetic Metals, 2018, 245, 127-134.	3.9	39
40	Axially phenoxy-derivative disubstituted phthalocyanine: synthesis, characterization and photophysical properties. Research on Chemical Intermediates, 2018, 44, 6197-6217.	2.7	3
41	Photovoltaic performance and photostability of anthocyanins, isoquinoline alkaloids and betalains as natural sensitizers for DSSCs. Solar Energy, 2018, 173, 34-41.	6.1	46
42	Preparation and investigation of aggregation, fluorescence and singlet oxygen generation properties of gallium and metal-free phthalocyanines. Journal of the Turkish Chemical Society, Section A: Chemistry, 2018, 5, 1051-1060.	1.1	8
43	Anionic water-soluble sulfonated phthalocyanines: microwave-assisted synthesis, aggregation behaviours, electrochemical and <i>in-situ</i> spectroelectrochemical characterisation. Supramolecular Chemistry, 2017, 29, 536-546.	1.2	30
44	Synthesis and photophysicochemical properties of novel thiadiazole-substituted zinc (II), gallium (III) and silicon (IV) phthalocyanines for photodynamic therapy. Inorganica Chimica Acta, 2017, 467, 169-176.	2.4	46
45	Synthesis and investigation of photophysicochemical properties of novel ketone-substituted gallium (III) and indium (III) phthalocyanines with high singlet oxygen yield for photodynamic therapy. Journal of Luminescence, 2017, 192, 888-892.	3.1	40
46	Synthesis of non-peripheral thioanisole-substituted phthalocyanines: Photophysical, electrochemical, photovoltaic, and sensing properties. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 348, 57-67.	3.9	27
47	Novel sulfonated hydrophilic indium(III) and gallium(III) phthalocyanine photosensitizers: preparation and investigation of photophysicochemical properties. Journal of Coordination Chemistry, 2017, 70, 2659-2670.	2.2	38
48	Microwave-assisted synthesis, electrochemistry and spectroelectrochemistry of amphiphilic phthalocyanines. Synthetic Metals, 2015, 199, 372-380.	3.9	30
49	One pot reaction and three type products; $1(4),8(11)-15(18),22(25)$ adjacent azine attached as macrocyclically mono, bunk-type (dimer) and polymeric metallo phthalocyanines; synthesis, spectroscopy, and electrochemistry. Dyes and Pigments, 2015, 113, 416-425.	3.7	18
50	Synthesis, characterization and photodynamic activity of a new amphiphilic zinc phthalocyanine. Dyes and Pigments, 2013, 97, 238-243.	3.7	84