Robie W Macdonald

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2941707/robie-w-macdonald-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

68 126 249 17,773 h-index g-index citations papers 6.55 19,528 271 5.9 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
249	Particle/gas partitioning behavior of polychlorinated biphenyls (PCBs) in global atmosphere: Equilibrium or steady state?. <i>Atmospheric Environment</i> , 2022 , 270, 118926	5.3	O
248	Approach to Predicting the Size-Dependent Inhalation Intake of Particulate Novel Brominated Flame Retardants. <i>Environmental Science & Environmental S</i>	10.3	1
247	Has primary production declined in the Salish Sea?. <i>Canadian Journal of Fisheries and Aquatic Sciences</i> , 2021 , 78, 312-321	2.4	2
246	Dynamic changes in size-fractionated dissolved organic matter composition in a seasonally ice-covered Arctic River. <i>Limnology and Oceanography</i> , 2021 , 66, 3085-3099	4.8	5
245	CASCADE IThe Circum-Arctic Sediment CArbon DatabasE. Earth System Science Data, 2021, 13, 2561-257	72 0.5	5
244	Slopes and intercepts from log-log correlations of gas/particle quotient and octanol-air partition coefficient (vapor-pressure) for semi-volatile organic compounds: I. Theoretical analysis. <i>Chemosphere</i> , 2021 , 273, 128865	8.4	2
243	Slopes and intercepts from log-log correlations of gas/particle quotient and octanol-air partition coefficient (vapor-pressure) for semi-volatile organic compounds: II. Theoretical predictions vs. monitoring. <i>Chemosphere</i> , 2021 , 273, 128860	8.4	4
242	Detrital neodymium and (radio)carbon as complementary sedimentary bedfellows? The Western Arctic Ocean as a testbed. <i>Geochimica Et Cosmochimica Acta</i> , 2021 , 315, 101-101	5.5	O
241	Particle/gas partitioning for semi-volatile organic compounds (SVOCs) in level III multimedia fugacity models: Both gaseous and particulate emissions. <i>Science of the Total Environment</i> , 2021 , 790, 148012	10.2	3
2 40	Particle/gas partitioning for semi-volatile organic compounds (SVOCs) in Level III multimedia fugacity models: Gaseous emissions. <i>Science of the Total Environment</i> , 2021 , 795, 148729	10.2	1
239	Modeling gas/particle partitioning of polybrominated diphenyl ethers (PBDEs) in the atmosphere: A review. <i>Science of the Total Environment</i> , 2020 , 729, 138962	10.2	8
238	Human exposure to polychlorinated biphenyls embodied in global fish trade. <i>Nature Food</i> , 2020 , 1, 292-	310104	13
237	New equation to predict size-resolved gas-particle partitioning quotients for polybrominated diphenyl ethers. <i>Journal of Hazardous Materials</i> , 2020 , 400, 123245	12.8	8
236	Polycyclic aromatic compounds (PACs) in the Canadian environment: A review of sampling techniques, strategies and instrumentation. <i>Environmental Pollution</i> , 2020 , 266, 114988	9.3	14
235	Sediment and particulate organic carbon budgets of a subarctic estuarine fjard: Lake Melville, Labrador. <i>Marine Geology</i> , 2020 , 424, 106154	3.3	1
234	Determining seawater mercury methylation and demethylation rates by the seawater incubation approach: A critique. <i>Marine Chemistry</i> , 2020 , 219, 103753	3.7	6
233	Effect of terrestrial organic matter on ocean acidification and CO2 flux in an Arctic shelf sea. <i>Progress in Oceanography</i> , 2020 , 185, 102319	3.8	9

232	Subsea permafrost carbon stocks and climate change sensitivity estimated by expert assessment. <i>Environmental Research Letters</i> , 2020 , 15, 124075	6.2	15
231	Gas/particle partitioning of semi-volatile organic compounds in the atmosphere: Transition from unsteady to steady state. <i>Science of the Total Environment</i> , 2020 , 710, 136394	10.2	12
230	Assessing the Contributions of Atmospheric/Meteoric Water and Sea Ice Meltwater and Their Influences on Geochemical Properties in Estuaries of the Canadian Arctic Archipelago. <i>Estuaries and Coasts</i> , 2019 , 42, 1226-1248	2.8	О
229	Rain, Runoff, and Diatoms: the Effects of the North Pacific 2014\(\bar{L}\)015 Warm Anomaly on Particle Flux in a Canadian West Coast Fjord. Estuaries and Coasts, 2019, 42, 1052-1065	2.8	3
228	Mercury and stable isotope cycles in baleen plates are consistent with year-round feeding in two bowhead whale (Balaena mysticetus) populations. <i>Polar Biology</i> , 2018 , 41, 1881-1893	2	12
227	The distribution and trends of persistent organic pollutants and mercury in marine mammals from Canada's Eastern Arctic. <i>Science of the Total Environment</i> , 2018 , 618, 500-517	10.2	82
226	Reply to Macreadie et al Comment on Leoengineering with seagrasses: is credit due where credit is given? [Interpretation of the comment of th	6.2	1
225	Reply to Oreska et al Comment on Geoengineering with seagrasses: is credit due where credit is given?[IEnvironmental Research Letters, 2018, 13, 038002	6.2	
224	Subsurface seawater methylmercury maximum explains biotic mercury concentrations in the Canadian Arctic. <i>Scientific Reports</i> , 2018 , 8, 14465	4.9	26
223	Current use pesticide and legacy organochlorine pesticide dynamics at the ocean-sea ice-atmosphere interface in resolute passage, Canadian Arctic, during winter-summer transition. <i>Science of the Total Environment</i> , 2017 , 580, 1460-1469	10.2	23
222	Early diagenesis and trace element accumulation in North American Arctic margin sediments. <i>Geochimica Et Cosmochimica Acta</i> , 2017 , 203, 175-200	5.5	14
221	Decabrominated Diphenyl Ethers (BDE-209) in Chinese and Global Air: Levels, Gas/Particle Partitioning, and Long-Range Transport: Is Long-Range Transport of BDE-209 Really Governed by the Movement of Particles?. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	45
220	Sources and accumulation of sediment and particulate organic carbon in a subarctic fjard estuary: 210Pb, 137Cs, and 🛮 3C records from Lake Melville, Labrador. <i>Canadian Journal of Earth Sciences</i> , 2017 , 54, 993-1006	1.5	3
219	Short-term variability in particle flux: Storms, blooms and river discharge in a coastal sea. <i>Continental Shelf Research</i> , 2017 , 143, 29-42	2.4	4
218	Organic matter compositions of rivers draining into Hudson Bay: Present-day trends and potential as recorders of future climate change. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2017 , 122, 18	48-7869	9 ¹⁶
217	On the geochemical heterogeneity of rivers draining into the straits and channels of the Canadian Arctic Archipelago. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2017 , 122, 2527-2547	3.7	17
216	Mercury Accumulation in Harbour Seals from the Northeastern Pacific Ocean: The Role of Transplacental Transfer, Lactation, Age and Location. <i>Archives of Environmental Contamination and Toxicology</i> , 2016 , 70, 56-66	3.2	27
215	Spatiotemporal patterns of mercury accumulation in lake sediments of western North America. <i>Science of the Total Environment</i> , 2016 , 568, 1157-1170	10.2	40

214	Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment. <i>Environmental Research Letters</i> , 2016 , 11, 034014	6.2	165
213	Pan-Arctic concentrations of mercury and stable isotope ratios of carbon ([13)C) and nitrogen ([15)N) in marine zooplankton. <i>Science of the Total Environment</i> , 2016 , 551-552, 92-100	10.2	15
212	Dinoflagellate cyst production over an annual cycle in seasonally ice-covered Hudson Bay. <i>Marine Micropaleontology</i> , 2016 , 125, 1-24	1.7	36
211	Vulnerability of a semienclosed estuarine sea to ocean acidification in contrast with hypoxia. <i>Geophysical Research Letters</i> , 2016 , 43, 5793-5801	4.9	26
210	Geoengineering with seagrasses: is credit due where credit is given?. <i>Environmental Research Letters</i> , 2016 , 11, 113001	6.2	43
209	The influence of global climate change on the environmental fate of persistent organic pollutants: A review with emphasis on the Northern Hemisphere and the Arctic as a receptor. <i>Global and Planetary Change</i> , 2016 , 146, 89-108	4.2	74
208	Local contamination, and not feeding preferences, explains elevated PCB concentrations in Labrador ringed seals (Pusa hispida). <i>Science of the Total Environment</i> , 2015 , 515-516, 188-97	10.2	10
207	Spatial, temporal, and source variations of hydrocarbons in marine sediments from Baffin Bay, Eastern Canadian Arctic. <i>Science of the Total Environment</i> , 2015 , 506-507, 430-43	10.2	27
206	The vulnerability of Arctic shelf sediments to climate change. <i>Environmental Reviews</i> , 2015 , 23, 461-479	4.5	26
205	Alkane and PAH provenance and potential bioavailability in coastal marine sediments subject to a gradient of anthropogenic sources in British Columbia, Canada. <i>Organic Geochemistry</i> , 2015 , 89-90, 80-1	16 ¹	48
204	The delivery of organic contaminants to the Arctic food web: why sea ice matters. <i>Science of the Total Environment</i> , 2015 , 506-507, 444-52	10.2	26
203	Local environmental conditions determine the footprint of municipal effluent in coastal waters: a case study in the Strait of Georgia, British Columbia. <i>Science of the Total Environment</i> , 2015 , 508, 228-39	10.2	17
202	Mercury in the marine environment of the Canadian Arctic: review of recent findings. <i>Science of the Total Environment</i> , 2015 , 509-510, 67-90	10.2	81
201	Multimolecular tracers of terrestrial carbon transfer across the pan-Arctic: 14C characteristics of sedimentary carbon components and their environmental controls. <i>Global Biogeochemical Cycles</i> , 2015 , 29, 1855-1873	5.9	38
200	Temporal and spatial variability of particle transport in the deep Arctic Canada Basin. <i>Journal of Geophysical Research: Oceans</i> , 2015 , 120, 2784-2799	3.3	16
199	Observing the Arctic Ocean carbon cycle in a changing environment. <i>Polar Research</i> , 2015 , 34, 26891	2	20
198	It is not just about the ice: a geochemical perspective on the changing Arctic Ocean. <i>Journal of Environmental Studies and Sciences</i> , 2015 , 5, 288-301	0.9	11
197	Multi-molecular tracers of terrestrial carbon transfer across the pan-Arctic: comparison of hydrolyzable components with plant wax lipids and lignin phenols. <i>Biogeosciences</i> , 2015 , 12, 4841-4860	4.6	21

196	Calculating Rates and Dates and Interpreting Contaminant Profiles in Biomixed Sediments. Developments in Paleoenvironmental Research, 2015 , 61-87		7
195	Spatial variations in geochemical characteristics of the modern Mackenzie Delta sedimentary system. <i>Geochimica Et Cosmochimica Acta</i> , 2015 , 171, 100-120	5.5	23
194	Distant drivers or local signals: where do mercury trends in western Arctic belugas originate?. <i>Science of the Total Environment</i> , 2015 , 509-510, 226-36	10.2	19
193	Classification of mercurylabile organic matter relationships in lake sediments. <i>Chemical Geology</i> , 2014 , 373, 87-92	4.2	17
192	Characterization of sedimentary organic matter in recent marine sediments from Hudson Bay, Canada, by Rock-Eval pyrolysis. <i>Organic Geochemistry</i> , 2014 , 68, 52-60	3.1	26
191	Distribution and uptake of key polychlorinated biphenyl and polybrominated diphenyl ether congeners in benthic infauna relative to sediment organic enrichment. <i>Archives of Environmental Contamination and Toxicology</i> , 2014 , 67, 310-34	3.2	8
190	Transformation of mercury at the bottom of the Arctic food web: an overlooked puzzle in the mercury exposure narrative. <i>Environmental Science & Environmental Science & Envir</i>	10.3	28
189	Why timing matters in a coastal sea: Trends, variability and tipping points in the Strait of Georgia, Canada. <i>Journal of Marine Systems</i> , 2014 , 131, 36-53	2.7	30
188	Surface sediment dinoflagellate cysts from the Hudson Bay system and their relation to freshwater and nutrient cycling. <i>Marine Micropaleontology</i> , 2014 , 106, 79-109	1.7	49
187	Oxygen in the deep Strait of Georgia, 1951\(\textit{D}\)009: The roles of mixing, deep-water renewal, and remineralization of organic carbon. Limnology and Oceanography, 2014, 59, 211-222	4.8	29
186	Changes in the marine carbonate system of the western Arctic: patterns in a rescued data set. <i>Polar Research</i> , 2014 , 33, 20577	2	14
185	Measurements of the dissolved inorganic carbon system and associated biogeochemical parameters in the Canadian Arctic, 19742009. <i>Earth System Science Data</i> , 2014 , 6, 91-104	10.5	6
184	Partitioning and bioaccumulation of PCBs and PBDEs in marine plankton from the Strait of Georgia, British Columbia, Canada. <i>Progress in Oceanography</i> , 2013 , 115, 65-75	3.8	35
183	Climatology of sediment flux and composition in the subarctic Northeast Pacific Ocean with biogeochemical implications. <i>Progress in Oceanography</i> , 2013 , 116, 95-129	3.8	25
182	The trouble with salmon: relating pollutant exposure to toxic effect in species with transformational life histories and lengthy migrations. <i>Canadian Journal of Fisheries and Aquatic Sciences</i> , 2013 , 70, 1252-1264	2.4	17
181	When will ⊞CH disappear from the western Arctic Ocean?. <i>Journal of Marine Systems</i> , 2013 , 127, 88-10	02.7	18
180	Beaufort Sea storm and resuspension modeling. <i>Journal of Marine Systems</i> , 2013 , 127, 14-25	2.7	15
179	A nitrogen budget for the Strait of Georgia, British Columbia, with emphasis on particulate nitrogen and dissolved inorganic nitrogen. <i>Biogeosciences</i> , 2013 , 10, 7179-7194	4.6	19

178	Scavenging amphipods: sentinels for penetration of mercury and persistent organic chemicals into food webs of the deep Arctic Ocean. <i>Environmental Science & Environmental Sc</i>	10.3	16
177	Distribution and sources of organic matter in surface marine sediments across the North American Arctic margin. <i>Journal of Geophysical Research: Oceans</i> , 2013 , 118, 4017-4035	3.3	68
176	The role of eddies on particle flux in the Canada Basin of the Arctic Ocean. <i>Deep-Sea Research Part I: Oceanographic Research Papers</i> , 2013 , 71, 1-20	2.5	26
175	Importance of Arctic zooplankton seasonal migrations for hexachlorocyclohexane bioaccumulation dynamics. <i>Environmental Science & Environmental & Environmenta</i>	10.3	5
174	Change at the margin of the North Water Polynya, Baffin Bay, inferred from organic matter records in dated sediment cores. <i>Marine Geology</i> , 2013 , 341, 1-13	3.3	9
173	The role of the global cryosphere in the fate of organic contaminants. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 3271-3305	6.8	96
172	210Pb and 137Cs in margin sediments of the Arctic Ocean: Controls on boundary scavenging. <i>Global Biogeochemical Cycles</i> , 2013 , 27, 422-439	5.9	28
171	Canadian Basin freshwater sources and changes: Results from the 2005 Arctic Ocean Section. Journal of Geophysical Research: Oceans, 2013, 118, 2133-2154	3.3	40
170	There is no 1954 in that core! Interpreting sedimentation rates and contaminant trends in marine sediment cores. <i>Marine Pollution Bulletin</i> , 2012 , 64, 675-8	6.7	40
169	How does climate change influence Arctic mercury?. Science of the Total Environment, 2012, 414, 22-42	10.2	169
168	Effect of receiving environment on the transport and fate of polybrominated diphenyl ethers near two submarine municipal outfalls. <i>Environmental Toxicology and Chemistry</i> , 2012 , 31, 566-73	3.8	10
167	The Arctic Ocean Estuary. Estuaries and Coasts, 2012, 35, 353-368	2.8	147
166	Sources and export fluxes of inorganic and organic carbon and nutrient species from the seasonally ice-covered Yukon River. <i>Biogeochemistry</i> , 2012 , 107, 187-206	3.8	81
165	Seasonal variability of water mass distribution in the southeastern Beaufort Sea determined by total alkalinity and 🛮 80. <i>Journal of Geophysical Research</i> , 2012 , 117, n/a-n/a		57
164	HCH enantiomer fraction (EF): A novel approach to calculate the ventilation age of water in the Arctic Ocean?. <i>Journal of Geophysical Research</i> , 2012 , 117, n/a-n/a		6
163	Total and methylated mercury in the Beaufort Sea: the role of local and recent organic remineralization. <i>Environmental Science & Environmental Scienc</i>	10.3	52
162	Manganese Sources and Sinks in the Arctic Ocean with Reference to Periodic Enrichments in Basin Sediments. <i>Aquatic Geochemistry</i> , 2012 , 18, 565-591	1.7	60
161	Mechanisms and implications of HCH enrichment in melt pond water on Arctic sea ice. Environmental Science & Environmental Sci	10.3	16

160	Mercury biomagnification in marine zooplankton food webs in Hudson Bay. <i>Environmental Science & Eamp; Technology</i> , 2012 , 46, 12952-9	10.3	57
159	Alkane distributions in Arctic Ocean sediments. Reply to Alkane and PAH biomarkers as tracers of terrigenous organic carbon in Arctic Ocean sediments by Mark B. Yunker, Robie W. Macdonald, Lloyd R. Snowdon, Brian R. Fowler: Comment Dy Vera Petrova and co-authors. <i>Organic</i>	3.1	1
158	Determination of mercury biogeochemical fluxes in the remote Mackenzie River Basin, northwest Canada, using speciation of sulfur and organic carbon. <i>Applied Geochemistry</i> , 2012 , 27, 815-824	3.5	19
157	PBDE and PCB accumulation in benthos near marine wastewater outfalls: the role of sediment organic carbon. <i>Environmental Pollution</i> , 2012 , 171, 241-8	9.3	26
156	The fate of mercury in Arctic terrestrial and aquatic ecosystems, a review. <i>Environmental Chemistry</i> , 2012 , 9, 321	3.2	92
155	Biomagnification of polychlorinated biphenyls in a harbor seal (Phoca vitulina) food web from the Strait of Georgia, British Columbia, Canada. <i>Environmental Toxicology and Chemistry</i> , 2012 , 31, 2445-55	3.8	16
154	Carbon dynamics in the western Arctic Ocean: insights from full-depth carbon isotope profiles of DIC, DOC, and POC. <i>Biogeosciences</i> , 2012 , 9, 1217-1224	4.6	60
153	Carbon dynamics in sea ice: A winter flux time series. Journal of Geophysical Research, 2011, 116,		115
152	The influence of the atmosphere-snow-ice-ocean interactions on the levels of hexachlorocyclohexanes in the Arctic cryosphere. <i>Journal of Geophysical Research</i> , 2011 , 116,		13
151	The role of eddies and energetic ocean phenomena in the transport of sediment from shelf to basin in the Arctic. <i>Journal of Geophysical Research</i> , 2011 , 116,		22
150	Alkane and PAH biomarkers as tracers of terrigenous organic carbon in Arctic Ocean sediments. <i>Organic Geochemistry</i> , 2011 , 42, 1109-1109	3.1	103
149	Inferences about the modern organic carbon cycle from diagenesis of redox-sensitive elements in Hudson Bay. <i>Journal of Marine Systems</i> , 2011 , 88, 451-462	2.7	13
148	Distributions of runoff, sea-ice melt and brine using 🛮 80 and salinity data 🖾 new view on freshwater cycling in Hudson Bay. <i>Journal of Marine Systems</i> , 2011 , 88, 362-374	2.7	31
147	The Hudson Bay system: A northern inland sea in transition. <i>Journal of Marine Systems</i> , 2011 , 88, 337-34	10 .7	18
146	Environmental fractionation of PCBs and PBDEs during particle transport as recorded by sediments in coastal waters. <i>Environmental Toxicology and Chemistry</i> , 2011 , 30, 1522-32	3.8	37
145	Effects of seabird vectors on the fate, partitioning, and signatures of contaminants in a High Arctic ecosystem. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	15
144	Comment on Climate change and mercury accumulation in Canadian High and Subarctic lakes. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	13
143	Hydrographic Changes in Nares Strait (Canadian Arctic Archipelago) in Recent Decades Based on 🛮 🛮 80 Profiles of Bivalve Shells. <i>Arctic</i> , 2011 , 64, 45	2.1	11

142	Preface: Special Section on Canadian Ocean Studies Conducted During International Polar Year. Atmosphere - Ocean, 2010 , 48, 1-2	1.5	
141	Coupling laser ablation and atomic fluorescence spectrophotometry: an example using mercury analysis of small sections of fish scales. <i>Analytical Chemistry</i> , 2010 , 82, 8785-8	7.8	19
140	Natural and anthropogenic mercury distribution in marine sediments from Hudson Bay, Canada. <i>Environmental Science & Environmental Science & Environme</i>	10.3	35
139	Biogeochemical controls on PCB deposition in Hudson Bay. <i>Environmental Science & Environmental Scienc</i>	10.3	32
138	Hand EHexachlorocyclohexane measurements in the brine fraction of sea ice in the Canadian High Arctic using a sump-hole technique. <i>Environmental Science & Environmental Scie</i>	10.3	25
137	Elemental and stable isotopic constraints on river influence and patterns of nitrogen cycling and biological productivity in Hudson Bay. <i>Continental Shelf Research</i> , 2010 , 30, 163-176	2.4	42
136	Effects of future climate change on primary productivity and export fluxes in the Beaufort Sea. <i>Journal of Geophysical Research</i> , 2010 , 115,		44
135	Increasing contaminant burdens in an arctic fish, Burbot (Lota lota), in a warming climate. <i>Environmental Science & Environmental Science & amp; Technology</i> , 2010 , 44, 316-22	10.3	116
134	The international polar year (IPY) circumpolar flaw lead (CFL) system study: The importance of brine processes for <code>\(\text{H}\)</code> and <code>\(\text{E}\) hexachlorocyclohexane (HCH) accumulation or rejection in sea ice. Atmosphere - Ocean, 2010, 48, 244-262</code>	1.5	31
133	Sea ice melt and meteoric water distributions in Nares Strait, Baffin Bay, and the Canadian Arctic Archipelago. <i>Journal of Marine Research</i> , 2010 , 68, 767-798	1.5	16
132	Are Arctic Ocean ecosystems exceptionally vulnerable to global emissions of mercury? A call for emphasised research on methylation and the consequences of climate change. <i>Environmental Chemistry</i> , 2010 , 7, 133	3.2	29
131	Organic-walled dinoflagellate cyst production, composition and flux from 1996 to 1998 in the central Strait of Georgia (BC, Canada): A sediment trap study. <i>Marine Micropaleontology</i> , 2010 , 75, 17-37	,1.7	79
130	The carbon budget of the northern cryosphere region. <i>Current Opinion in Environmental Sustainability</i> , 2010 , 2, 231-236	7.2	54
129	Seabird-driven shifts in Arctic pond ecosystems. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2009 , 276, 591-6	4.4	82
128	Historical analysis of salmon-derived polychlorinated biphenyls (PCBs) in lake sediments. <i>Science of the Total Environment</i> , 2009 , 407, 1977-89	10.2	10
127	Natural rates of sediment containment of PAH, PCB and metal inventories in Sydney Harbour, Nova Scotia. <i>Science of the Total Environment</i> , 2009 , 407, 4858-69	10.2	36
126	Large and growing environmental reservoirs of Deca-BDE present an emerging health risk for fish and marine mammals. <i>Marine Pollution Bulletin</i> , 2009 , 58, 7-10	6.7	140
125	Primary productivity and export fluxes on the Canadian shelf of the Beaufort Sea: A modelling study. <i>Journal of Marine Systems</i> , 2009 , 75, 17-32	2.7	52

(2008-2009)

124	Trace element and molecular markers of organic carbon dynamics along a shelfbasin continuum in sediments of the western Arctic Ocean. <i>Marine Chemistry</i> , 2009 , 115, 72-85	3.7	20
123	Towards a sediment and organic carbon budget for Hudson Bay. <i>Marine Geology</i> , 2009 , 264, 190-208	3.3	35
122	High arctic ponds receiving biotransported nutrients from a nearby seabird colony are also subject to potentially toxic loadings of arsenic, cadmium, and zinc. <i>Environmental Toxicology and Chemistry</i> , 2009 , 28, 2426-33	3.8	59
121	Mercury in the Arctic: are we overlooking the ocean?. <i>Integrated Environmental Assessment and Management</i> , 2009 , 5, 178-80	2.5	
120	Accelerated delivery of polychlorinated biphenyls (PCBs) in recent sediments near a large seabird colony in Arctic Canada. <i>Environmental Pollution</i> , 2009 , 157, 2769-75	9.3	26
119	Coastal conduit in southwestern Hudson Bay (Canada) in summer: Rapid transit of freshwater and significant loss of colored dissolved organic matter. <i>Journal of Geophysical Research</i> , 2009 , 114,		34
118	Sensitivity of the carbon cycle in the Arctic to climate change. <i>Ecological Monographs</i> , 2009 , 79, 523-555	59	699
117	Glacial to postglacial transformation of organic input pathways in Arctic Ocean basins. <i>Global Biogeochemical Cycles</i> , 2009 , 23, n/a-n/a	5.9	6
116	The Use of Stable Oxygen Isotope (180) Composition in Sockeye Salmon Body Fluid to Determine whether a Fish Has Been Caught in Freshwater. <i>North American Journal of Fisheries Management</i> , 2009 , 29, 560-569	1.1	2
115	Effects of local and global change on an inland sea: the Strait of Georgia, British Columbia, Canada. <i>Climate Research</i> , 2009 , 40, 1-21	1.6	40
114	Sea ice, hydrological, and biological processes in the Churchill River estuary region, Hudson Bay. <i>Estuarine, Coastal and Shelf Science</i> , 2008 , 77, 369-384	2.9	32
113	Contemporary and preindustrial mass budgets of mercury in the Hudson Bay Marine System: the role of sediment recycling. <i>Science of the Total Environment</i> , 2008 , 406, 190-204	10.2	33
112	The overlooked role of the ocean in mercury cycling in the Arctic. <i>Marine Pollution Bulletin</i> , 2008 , 56, 1963-5	6.7	11
111	A mass balance inventory of mercury in the Arctic Ocean. <i>Environmental Chemistry</i> , 2008 , 5, 89	3.2	139
110	Joined by geochemistry, divided by history: PCBs and PBDEs in Strait of Georgia sediments. <i>Marine Environmental Research</i> , 2008 , 66 Suppl, S112-20	3.3	51
109	Water column organic carbon in a Pacific marginal sea (Strait of Georgia, Canada). <i>Marine Environmental Research</i> , 2008 , 66 Suppl, S49-61	3.3	13
108	Sediment redox tracers in Strait of Georgia sedimentscan they inform us of the loadings of organic carbon from municipal wastewater?. <i>Marine Environmental Research</i> , 2008 , 66 Suppl, S87-100	3.3	26
107	Axinopsida serricata shell encrustation: a potential indicator of organic enrichment conditions in sediments in the southern Strait of Georgia, British Columbia, Canada. <i>Marine Environmental Research</i> , 2008 , 66 Suppl, S101-11	3.3	7

106	Responses of subtidal benthos of the Strait of Georgia, British Columbia, Canada to ambient sediment conditions and natural and anthropogenic depositions. <i>Marine Environmental Research</i> , 2008 , 66 Suppl, S62-79	3.3	27
105	Biogeochemical cycling in the Strait of Georgia. <i>Marine Environmental Research</i> , 2008 , 66 Suppl, S1-2	3.3	5
104	Chemical Invironment interactions affecting the risk of impacts on aquatic organisms: A review with a Canadian perspective Interactions affecting exposure. <i>Environmental Reviews</i> , 2008 , 16, 1-17	4.5	18
103	Chemical Invironment interactions affecting the risk of impacts on aquatic organisms: A review with a Canadian perspective Interactions affecting vulnerability. <i>Environmental Reviews</i> , 2008 , 16, 19-44	4.5	31
102	Sources, pathways and sinks of particulate organic matter in Hudson Bay: Evidence from lignin distributions. <i>Marine Chemistry</i> , 2008 , 112, 215-229	3.7	58
101	Hexachlorocyclohexanes in the Canadian archipelago. 1. Spatial distribution and pathways of alpha-, beta- and gamma-HCHS in surface water. <i>Environmental Science & Environmental Science & Environmen</i>	8 8 -93	39
100	Killer whales (Orcinus orca) face protracted health risks associated with lifetime exposure to PCBs. <i>Environmental Science & Environmental Science & </i>	10.3	83
99	Mobilization pathways of organic carbon from permafrost to arctic rivers in a changing climate. <i>Geophysical Research Letters</i> , 2007 , 34, n/a-n/a	4.9	197
98	Biologically mediated transport of contaminants to aquatic systems. <i>Environmental Science & Environmental Science & Technology</i> , 2007 , 41, 1075-84	10.3	185
97	Constraints on the origin of sedimentary organic carbon in the Beaufort Sea from coupled molecular 13C and 14C measurements. <i>Marine Chemistry</i> , 2007 , 103, 146-162	3.7	165
96	Interactions between climate change and contaminants. <i>Marine Pollution Bulletin</i> , 2007 , 54, 1845-56	6.7	262
95	The delivery of mercury to the Beaufort Sea of the Arctic Ocean by the Mackenzie River. <i>Science of the Total Environment</i> , 2007 , 373, 178-95	10.2	100
94	Tracing salmon-derived nutrients and contaminants in freshwater food webs across a pronounced spawner density gradient. <i>Environmental Toxicology and Chemistry</i> , 2007 , 26, 1100-8	3.8	32
93	Distribution, characteristics and potential impacts of chromophoric dissolved organic matter (CDOM) in Hudson Strait and Hudson Bay, Canada. <i>Continental Shelf Research</i> , 2007 , 27, 2032-2050	2.4	100
92	Climate variability and physical forcing of the food webs and the carbon budget on panarctic shelves. <i>Progress in Oceanography</i> , 2006 , 71, 145-181	3.8	188
91	Effects of ultraviolet radiation and contaminant-related stressors on arctic freshwater ecosystems. <i>Ambio</i> , 2006 , 35, 388-401	6.5	21
90	Source and transport of terrigenous organic matter in the upper Yukon River: Evidence from isotope (¶3C, ¶4C, and ¶5N) composition of dissolved, colloidal, and particulate phases. <i>Global Biogeochemical Cycles</i> , 2006 , 20, n/a-n/a	5.9	209
89	Distribution and Cycling of Suspended Particles Inferred from Transmissivity in the Strait of Georgia, Haro Strait and Juan de Fuca Strait. <i>Atmosphere - Ocean</i> , 2006 , 44, 17-27	1.5	32

(2004-2006)

88	Particle fluxes and geochemistry on the Canadian Beaufort Shelf: Implications for sediment transport and deposition. <i>Continental Shelf Research</i> , 2006 , 26, 41-81	2.4	147
87	Joint effects of wind and ice motion in forcing upwelling in Mackenzie Trough, Beaufort Sea. <i>Continental Shelf Research</i> , 2006 , 26, 2352-2366	2.4	76
86	Climate Change, Risks and Contaminants: A Perspective from Studying the Arctic. <i>Human and Ecological Risk Assessment (HERA)</i> , 2005 , 11, 1099-1104	4.9	21
85	Concentrations and fluxes of salmon-derived polychlorinated biphenyls (PCBs) in lake sediments. <i>Environmental Science & Environmental Science & Envir</i>	10.3	31
84	Persistent organic pollutants in British Columbia grizzly bears: consequence of divergent diets. <i>Environmental Science & Environmental Science & Envi</i>	10.3	113
83	Trifluoroacetate profiles in the Arctic, Atlantic, and Pacific Oceans. <i>Environmental Science & Environmental Science & Technology</i> , 2005 , 39, 6555-60	10.3	49
82	Biogeographic provinces of total and methyl mercury in zooplankton and fish from the Beaufort and Chukchi seas: results from the SHEBA drift. <i>Environmental Science & Environmental Science & Environ</i>	7 ⁻¹ 13 ³	45
81	Historical trends in mercury sedimentation and mixing in the Strait of Georgia, Canada. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	41
80	Tracing the inputs and fate of marine and terrigenous organic matter in Arctic Ocean sediments: A multivariate analysis of lipid biomarkers. <i>Deep-Sea Research Part II: Topical Studies in Oceanography</i> , 2005 , 52, 3478-3508	2.3	84
79	The supply and preservation of ancient and modern components of organic carbon in the Canadian Beaufort Shelf of the Arctic Ocean. <i>Marine Chemistry</i> , 2005 , 93, 53-73	3.7	220
	Beautort Sherr of the Artic Ocean. Murine Chemistry, 2005 , 95, 55-75	3.1	
78	Seasonal and spatial variations in the source and transport of sinking particles in the Strait of Georgia, British Columbia, Canada. <i>Marine Geology</i> , 2005 , 216, 59-77	3.3	46
	Seasonal and spatial variations in the source and transport of sinking particles in the Strait of	3.3	46 317
78	Seasonal and spatial variations in the source and transport of sinking particles in the Strait of Georgia, British Columbia, Canada. <i>Marine Geology</i> , 2005 , 216, 59-77 Sources and pathways of selected organochlorine pesticides to the Arctic and the effect of	3.3	
7 ⁸	Seasonal and spatial variations in the source and transport of sinking particles in the Strait of Georgia, British Columbia, Canada. <i>Marine Geology</i> , 2005 , 216, 59-77 Sources and pathways of selected organochlorine pesticides to the Arctic and the effect of pathway divergence on HCH trends in biota: a review. <i>Science of the Total Environment</i> , 2005 , 342, 87-10 Mercury in the Arctic atmosphere: an analysis of eight years of measurements of GEM at Alert (Canada) and a comparison with observations at Amderma (Russia) and Kuujjuarapik (Canada).	3·3 06 ^{0.2}	317
78 77 76	Seasonal and spatial variations in the source and transport of sinking particles in the Strait of Georgia, British Columbia, Canada. <i>Marine Geology</i> , 2005 , 216, 59-77 Sources and pathways of selected organochlorine pesticides to the Arctic and the effect of pathway divergence on HCH trends in biota: a review. <i>Science of the Total Environment</i> , 2005 , 342, 87-10 Mercury in the Arctic atmosphere: an analysis of eight years of measurements of GEM at Alert (Canada) and a comparison with observations at Amderma (Russia) and Kuujjuarapik (Canada). <i>Science of the Total Environment</i> , 2005 , 342, 185-98 Recent climate change in the Arctic and its impact on contaminant pathways and interpretation of	3·3 06 ^{0.2} 10.2	317
78 77 76 75	Seasonal and spatial variations in the source and transport of sinking particles in the Strait of Georgia, British Columbia, Canada. <i>Marine Geology</i> , 2005 , 216, 59-77 Sources and pathways of selected organochlorine pesticides to the Arctic and the effect of pathway divergence on HCH trends in biota: a review. <i>Science of the Total Environment</i> , 2005 , 342, 87-10 Mercury in the Arctic atmosphere: an analysis of eight years of measurements of GEM at Alert (Canada) and a comparison with observations at Amderma (Russia) and Kuujjuarapik (Canada). <i>Science of the Total Environment</i> , 2005 , 342, 185-98 Recent climate change in the Arctic and its impact on contaminant pathways and interpretation of temporal trend data. <i>Science of the Total Environment</i> , 2005 , 342, 5-86 Historical alpha-HCH budget in the Arctic Ocean: the Arctic Mass Balance Box Model (AMBBM).	3·3 060.2 10.2	317 108 512
78 77 76 75 74	Seasonal and spatial variations in the source and transport of sinking particles in the Strait of Georgia, British Columbia, Canada. <i>Marine Geology</i> , 2005 , 216, 59-77 Sources and pathways of selected organochlorine pesticides to the Arctic and the effect of pathway divergence on HCH trends in biota: a review. <i>Science of the Total Environment</i> , 2005 , 342, 87-10 Mercury in the Arctic atmosphere: an analysis of eight years of measurements of GEM at Alert (Canada) and a comparison with observations at Amderma (Russia) and Kuujjuarapik (Canada). <i>Science of the Total Environment</i> , 2005 , 342, 185-98 Recent climate change in the Arctic and its impact on contaminant pathways and interpretation of temporal trend data. <i>Science of the Total Environment</i> , 2005 , 342, 5-86 Historical alpha-HCH budget in the Arctic Ocean: the Arctic Mass Balance Box Model (AMBBM). <i>Science of the Total Environment</i> , 2004 , 324, 115-39	3.3 060.2 10.2 10.2	317 108 512 46
78 77 76 75 74	Seasonal and spatial variations in the source and transport of sinking particles in the Strait of Georgia, British Columbia, Canada. <i>Marine Geology</i> , 2005 , 216, 59-77 Sources and pathways of selected organochlorine pesticides to the Arctic and the effect of pathway divergence on HCH trends in biota: a review. <i>Science of the Total Environment</i> , 2005 , 342, 87-10 Mercury in the Arctic atmosphere: an analysis of eight years of measurements of GEM at Alert (Canada) and a comparison with observations at Amderma (Russia) and Kuujjuarapik (Canada). <i>Science of the Total Environment</i> , 2005 , 342, 185-98 Recent climate change in the Arctic and its impact on contaminant pathways and interpretation of temporal trend data. <i>Science of the Total Environment</i> , 2005 , 342, 5-86 Historical alpha-HCH budget in the Arctic Ocean: the Arctic Mass Balance Box Model (AMBBM). <i>Science of the Total Environment</i> , 2004 , 324, 115-39 The Historical Record of Metals in Sediments from Six Lakes in the Fraser River Basin, British Columbia. <i>Water</i> , <i>Air</i> , <i>and Soil Pollution</i> , 2004 , 152, 257-278 The role of depositional regime on carbon transport and preservation in Arctic Ocean sediments.	3.3 060.2 10.2 10.2 2.6	317 108 512 46

70	Phytoplankton productivity on the Canadian Shelf of the Beaufort Sea. <i>Marine Ecology - Progress Series</i> , 2004 , 277, 37-50	2.6	208
69	A sediment and organic carbon budget for the greater Strait of Georgia. <i>Estuarine, Coastal and Shelf Science</i> , 2003 , 56, 845-860	2.9	73
68	Aquatic ecology: delivery of pollutants by spawning salmon. <i>Nature</i> , 2003 , 425, 255-6	50.4	110
67	How Will Global Climate Change Affect Risks from Long-Range Transport of Persistent Organic Pollutants?. <i>Human and Ecological Risk Assessment (HERA)</i> , 2003 , 9, 643-660	4.9	89
66	Alkane and PAH depositional history, sources and fluxes in sediments from the Fraser River Basin and Strait of Georgia, Canada. <i>Organic Geochemistry</i> , 2003 , 34, 1429-1454	3.1	148
65	Petroleum biomarker sources in suspended particulate matter and sediments from the Fraser River Basin and Strait of Georgia, Canada. <i>Organic Geochemistry</i> , 2003 , 34, 1525-1541	3.1	43
64	ShelfBasin interactions in the Arctic Ocean based on 210Pb and Ra isotope tracer distributions. Deep-Sea Research Part I: Oceanographic Research Papers, 2003, 50, 397-416	2.5	50
63	A review of marine environmental contaminant issues in the North Pacific: The dangers and how to identify them. <i>Environmental Reviews</i> , 2003 , 11, 103-139	4.5	8
62	The transport of beta-hexachlorocyclohexane to the western Arctic Ocean: a contrast to alpha-HCH. <i>Science of the Total Environment</i> , 2002 , 291, 229-46	10.2	122
61	Design and implementation of a program to monitor ocean health. <i>Ocean and Coastal Management</i> , 2002 , 45, 325-355	3.9	9
60	Sources and Significance of Alkane and PAH Hydrocarbons in Canadian Arctic Rivers. <i>Estuarine</i> , <i>Coastal and Shelf Science</i> , 2002 , 55, 1-31	2.9	163
59	Sources and transport of organic carbon to shelf, slope, and basin surface sediments of the Arctic Ocean. <i>Deep-Sea Research Part I: Oceanographic Research Papers</i> , 2002 , 49, 1463-1483	2.5	60
58	Fresh water and its sources during the SHEBA drift in the Canada Basin of the Arctic Ocean. Deep-Sea Research Part I: Oceanographic Research Papers, 2002, 49, 1769-1785	2.5	110
57	PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. <i>Organic Geochemistry</i> , 2002 , 33, 489-515	3.1	2851
56	Oceanography of the Canadian Shelf of the Beaufort Sea: A Setting for Marine Life. Arctic, 2002, 55,	2.1	170
55	Recent change in organic carbon flux to Arctic Ocean deep basins: Evidence from acid volatile sulfide, manganese and rhenium discord in sediments. <i>Geophysical Research Letters</i> , 2001 , 28, 1743-174	6 ^{4.9}	45
54	Atlantic water flow pathways revealed by lead contamination in Arctic basin sediments. <i>Science</i> , 2001 , 293, 1301-4	33.3	62
53	The Arctic Ocean and Contaminants: Pathways That Lead to Us 2001 , 135-149		1

52	Distribution and sources of organic biomarkers in arctic sediments from the Mackenzie River and Beaufort Shelf. <i>Marine Chemistry</i> , 2000 , 71, 23-51	3.7	218
51	Organic carbon isotope ratios (🛘 3C) of Arctic Amerasian Continental shelf sediments. <i>International Journal of Earth Sciences</i> , 2000 , 89, 522-532	2.2	152
50	Punctuated recovery of sediments and benthic infauna: a 19-year study of tailings deposition in a British Columbia fjord. <i>Marine Environmental Research</i> , 2000 , 49, 145-75	3.3	29
49	Contaminants in the Canadian Arctic: 5 years of progress in understanding sources, occurrence and pathways. <i>Science of the Total Environment</i> , 2000 , 254, 93-234	10.2	526
48	Tests of the fidelity of lake sediment core records of mercury deposition to known histories of mercury contamination. <i>Science of the Total Environment</i> , 2000 , 260, 171-80	10.2	84
47	Microbial degradation is a key elimination pathway of hexachlorocyclohexanes from the Arctic Ocean. <i>Geophysical Research Letters</i> , 2000 , 27, 1155-1158	4.9	32
46	Exploring continental margin carbon fluxes on a global scale. <i>Eos</i> , 2000 , 81, 641	1.5	86
45	Using the 🛮 80 composition in landfast ice as a record of arctic estuarine processes. <i>Marine Chemistry</i> , 1999 , 65, 3-24	3.7	33
44	Quantitative determination of nonylphenol polyethoxylate surfactants in marine sediment using normal-phase liquid chromatography-electrospray mass spectrometry. <i>Journal of Chromatography A</i> , 1999 , 849, 467-82	4.5	111
43	Differentiation of polychlorinated dibenzo-p-dioxin and dibenzofuran sources in coastal British Columbia, Canada. <i>Environmental Toxicology and Chemistry</i> , 1999 , 18, 1097-1108	3.8	25
42	Natural and anthropogenic inputs of hydrocarbons to the Strait of Georgia. <i>Science of the Total Environment</i> , 1999 , 225, 181-209	10.2	153
41	Mercury Profiles in Sediments of the Arctic Ocean Basins. <i>Environmental Science & Emp; Technology</i> , 1999 , 33, 4194-4198	10.3	109
40	Persistence of Nonylphenol Ethoxylate Surfactants and Their Primary Degradation Products in Sediments from near a Municipal Outfall in the Strait of Georgia, British Columbia, Canada. <i>Environmental Science & Description (Manager Propries)</i> , 33, 1366-1372	10.3	152
39	A sediment and organic carbon budget for the Canadian Beaufort Shelf. <i>Marine Geology</i> , 1998 , 144, 255	-3.73	228
38	Historical Inputs of PCDDs, PCDFs, and PCBs to a British Columbia Interior Lake: The Effect of Environmental Controls on Pulp Mill Emissions. <i>Environmental Science & Environmental Science & Environ</i>	3 ¹ 37 ³	61
37	Waters of the Makarov and Canada basins. <i>Deep-Sea Research Part II: Topical Studies in Oceanography</i> , 1997 , 44, 1503-1529	2.3	174
36	Changes in temperature and tracer distributions within the Arctic Ocean: results from the 1994 Arctic Ocean section. <i>Deep-Sea Research Part II: Topical Studies in Oceanography</i> , 1997 , 44, 1487-1502	2.3	156
35	Diagenetic separation of cadmium and manganese in suboxic continental margin sediments. Geochimica Et Cosmochimica Acta, 1997 , 61, 4647-4654	5.5	107

34	Polycyclic Aromatic Hydrocarbon Composition and Potential Sources for Sediment Samples from the Beaufort and Barents Seas. <i>Environmental Science & Environmental Science & En</i>	10.3	215
33	Transport and fate of mine tailings in a coastal fjord of British Columbia as inferred from the sediment record. <i>Science of the Total Environment</i> , 1996 , 191, 77-94	10.2	18
32	Physical and geochemical properties across the Atlantic/Pacific water mass front in the southern Canadian Basin. <i>Journal of Geophysical Research</i> , 1996 , 101, 1183-1197		201
31	Terrestrial and marine biomarkers in a seasonally ice-covered Arctic estuary Integration of multivariate and biomarker approaches. <i>Marine Chemistry</i> , 1995 , 49, 1-50	3.7	210
30	Sources and burden of lead in st. Lawrence estuary sediments: isotopic evidence. <i>Environmental Science & Environmental Scienc</i>	10.3	68
29	The freshwater budget and under-ice spreading of Mackenzie River water in the Canadian Beaufort Sea based on salinity and 18O/16O measurements in water and ice. <i>Journal of Geophysical Research</i> , 1995 , 100, 895		167
28	Evidence for warming of Atlantic water in the Southern Canadian Basin of the Arctic Ocean: Results from the Larsen-93 Expedition. <i>Geophysical Research Letters</i> , 1995 , 22, 1061-1064	4.9	178
27	Composition and Origins of Polycyclic Aromatic Hydrocarbons in the Mackenzie River and on the Beaufort Sea Shelf. <i>Arctic</i> , 1995 , 48,	2.1	108
26	Modeling the seasonal cycle of salinity in the Mackenzie shelf/estuary. <i>Journal of Geophysical Research</i> , 1994 , 99, 10011		22
25	Phase associations and lipid distributions in the seasonally ice-covered Arctic estuary of the Mackenzie Shelf. <i>Organic Geochemistry</i> , 1994 , 22, 651-669	3.1	24
25		3.1 5.5	24 145
	Mackenzie Shelf. <i>Organic Geochemistry</i> , 1994 , 22, 651-669 Alkane, terpene and polycyclic aromatic hydrocarbon geochemistry of the Mackenzie River and Mackenzie shelf: Riverine contributions to Beaufort Sea coastal sediment. <i>Geochimica Et</i>		145
24	Mackenzie Shelf. <i>Organic Geochemistry</i> , 1994 , 22, 651-669 Alkane, terpene and polycyclic aromatic hydrocarbon geochemistry of the Mackenzie River and Mackenzie shelf: Riverine contributions to Beaufort Sea coastal sediment. <i>Geochimica Et Cosmochimica Acta</i> , 1993 , 57, 3041-3061 A history of octachlorodibenzo-p-dioxin, 2,3,7,8-tetrachlorodibenzofuran, and 3,3',4,4'-tetrachlorobiphenyl contamination in Howe Sound, British Columbia. <i>Environmental Science</i>	5.5	145
24	Mackenzie Shelf. <i>Organic Geochemistry</i> , 1994 , 22, 651-669 Alkane, terpene and polycyclic aromatic hydrocarbon geochemistry of the Mackenzie River and Mackenzie shelf: Riverine contributions to Beaufort Sea coastal sediment. <i>Geochimica Et Cosmochimica Acta</i> , 1993 , 57, 3041-3061 A history of octachlorodibenzo-p-dioxin, 2,3,7,8-tetrachlorodibenzofuran, and 3,3',4,4'-tetrachlorobiphenyl contamination in Howe Sound, British Columbia. <i>Environmental Science & Environmental Science</i> & 2,26, 1544-1550 Accumulation of heavy metals (Pb, Zn, Cu, Cd), carbon and nitrogen in sediments from Strait of	5.5	145 49
24 23 22	Alkane, terpene and polycyclic aromatic hydrocarbon geochemistry of the Mackenzie River and Mackenzie shelf: Riverine contributions to Beaufort Sea coastal sediment. <i>Geochimica Et Cosmochimica Acta</i> , 1993, 57, 3041-3061 A history of octachlorodibenzo-p-dioxin, 2,3,7,8-tetrachlorodibenzofuran, and 3,3',4,4'-tetrachlorobiphenyl contamination in Howe Sound, British Columbia. <i>Environmental Science & Environmental Science & Environmenta</i>	5.5 10.3 3.7	145 49 48
24 23 22 21	Mackenzie Shelf. Organic Geochemistry, 1994, 22, 651-669 Alkane, terpene and polycyclic aromatic hydrocarbon geochemistry of the Mackenzie River and Mackenzie shelf: Riverine contributions to Beaufort Sea coastal sediment. Geochimica Et Cosmochimica Acta, 1993, 57, 3041-3061 A history of octachlorodibenzo-p-dioxin, 2,3,7,8-tetrachlorodibenzofuran, and 3,3',4,4'-tetrachlorobiphenyl contamination in Howe Sound, British Columbia. Environmental Science & Envir	5.5 10.3 3.7 2.4	145494832
24 23 22 21 20	Alkane, terpene and polycyclic aromatic hydrocarbon geochemistry of the Mackenzie River and Mackenzie shelf: Riverine contributions to Beaufort Sea coastal sediment. <i>Geochimica Et Cosmochimica Acta</i> , 1993 , 57, 3041-3061 A history of octachlorodibenzo-p-dioxin, 2,3,7,8-tetrachlorodibenzofuran, and 3,3',4,4'-tetrachlorobiphenyl contamination in Howe Sound, British Columbia. <i>Environmental Science & Environmental Science & Environmen</i>	5.5 10.3 3.7 2.4 1.5	145 49 48 32 16

LIST OF PUBLICATIONS

16	Organic carbon and colloids in the Mackenzie River and Beaufort Sea. <i>Marine Chemistry</i> , 1989 , 26, 371-3	7 ;87	44
15	On the natural enrichment of cadmium and molybdenum in the sediments of Ucluelet Inlet, British Columbia. <i>Science of the Total Environment</i> , 1989 , 79, 125-39	10.2	30
14	Measurement of natural trace dissolved hydrocarbons by in situ column extraction. An intercomparison of two adsorption resins. <i>Analytical Chemistry</i> , 1989 , 61, 1333-1343	7.8	24
13	The distribution of nutrients in the southeastern Beaufort Sea: Implications for water circulation and primary production. <i>Journal of Geophysical Research</i> , 1987 , 92, 2939		97
12	The storage of reactive silicate samples by freezing. <i>Limnology and Oceanography</i> , 1986 , 31, 1139-1142	4.8	31
11	Extending the use of certified reference sediments for assessment of accuracy in determinations of trace metals. <i>Analytica Chimica Acta</i> , 1985 , 177, 81-91	6.6	7
10	Effect of wood waste dumping on organic matter in seawater and surficial sediments of Alberni Inlet, British Columbia. <i>Journal of the Oceanographical Society of Japan</i> , 1984 , 40, 213-220		4
9	The effect of storage by freezing on dissolved inorganic phosphate, nitrate and reactive silicate for samples from coastal and estuarine waters. <i>Water Research</i> , 1982 , 16, 95-104	12.5	36
8	An examination of metal inputs to the southern Beaufort Sea by disposal of waste barite in drilling fluid. <i>Ocean Management</i> , 1982 , 8, 29-49		6
7	The interaction of chlorine and seawater, with special reference to the four liquid chlorine tank cars lost in British Columbia coastal waters. <i>Journal of Hazardous Materials</i> , 1977 , 2, 51-75	12.8	1
6	Distribution of low-molecular-weight hydrocarbons in Southern Beaufort Sea. <i>Environmental Science & Environmental Science & E</i>	10.3	22
5	The Effect of Pressure on the Solubility of CaCO3, CaF2, and SrS04 in Water. <i>Canadian Journal of Chemistry</i> , 1974 , 52, 3181-3186	0.9	32
4	The Mackenzie Estuary of the Arctic Ocean91-120		32
3	A~nitrogen budget for the Strait of Georgia, British Columbia		4
2	Multi-molecular tracers of terrestrial carbon transfer across the pan-Arctic (Part 1: Comparison of hydrolysable components with plant wax lipids and lignin phenols		1
1	Measurements of the dissolved inorganic carbon system and associated biogeochemical parameters in the Canadian Arctic, 1974\(\bar{D}\)009		1