Jinwhan Joo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/294125/publications.pdf

Version: 2024-02-01

516215 713013 1,326 21 16 21 h-index citations g-index papers 22 22 22 2015 times ranked all docs docs citations citing authors

#	Article	IF	CITATIONS
1	Mnâ€Dopant Differentiating the Ru and Ir Oxidation States in Catalytic Oxides Toward Durable Oxygen Evolution Reaction in Acidic Electrolyte. Small Methods, 2022, 6, e2101236.	4.6	31
2	Microfluidicsâ€Assisted Synthesis of Hierarchical Cu ₂ 0 Nanocrystal as C ₂ â€Selective CO ₂ Reduction Electrocatalyst. Small Methods, 2022, 6, e2200074.	4.6	19
3	Double Hypercrosslinked Porous Organic Polymer-Derived Electrocatalysts for a Water Splitting Device. ACS Applied Energy Materials, 2022, 5, 3269-3274.	2.5	6
4	Microfluidicsâ€Assisted Synthesis of Hierarchical Cu ₂ O Nanocrystal as C ₂ â€Selective CO ₂ Reduction Electrocatalyst (Small Methods 5/2022). Small Methods, 2022, 6, .	4.6	1
5	Interfacing RuO ₂ with Pt to induce efficient charge transfer from Pt to RuO ₂ for highly efficient and stable oxygen evolution in acidic media. Journal of Materials Chemistry A, 2021, 9, 14352-14362.	5.2	25
6	Recent advances in non-precious group metal-based catalysts for water electrolysis and beyond. Journal of Materials Chemistry A, 2021, 10, 50-88.	5.2	44
7	Pt ²⁺ -Exchanged ZIF-8 nanocube as a solid-state precursor for L1 ₀ -PtZn intermetallic nanoparticles embedded in a hollow carbon nanocage. Nanoscale, 2020, 12, 1118-1127.	2.8	10
8	Dopant-Assisted Control of the Crystallite Domain Size in Hollow Ternary Iridium Alloy Octahedral Nanocages toward the Oxygen Evolution Reaction. Cell Reports Physical Science, 2020, 1, 100260.	2.8	14
9	Hollow Structured Metal Sulfides for Photocatalytic Hydrogen Generation. ChemNanoMat, 2020, 6, 850-869.	1.5	25
10	High entropy alloy electrocatalysts: a critical assessment of fabrication and performance. Journal of Materials Chemistry A, 2020, 8, 14844-14862.	5.2	108
11	Synthesis and characterization of $\ln 1\hat{a}^{\circ}$ Ga P@ZnS alloy core-shell type colloidal quantum dots. Journal of Industrial and Engineering Chemistry, 2020, 88, 106-110.	2.9	10
12	Nanoscale hetero-interfaces between metals and metal compounds for electrocatalytic applications. Journal of Materials Chemistry A, 2019, 7, 5090-5110.	5.2	128
13	Synthesis of nano-sized urchin-shaped LiFePO ₄ for lithium ion batteries. RSC Advances, 2019, 9, 13714-13721.	1.7	19
14	Recent Progress in Bifunctional Electrocatalysts for Overall Water Splitting under Acidic Conditions. ChemElectroChem, 2019, 6, 3244-3253.	1.7	79
15	Morphologyâ€Controlled Metal Sulfides and Phosphides for Electrochemical Water Splitting. Advanced Materials, 2019, 31, e1806682.	11.1	500
16	Hemi-core@frame AuCu@IrNi nanocrystals as active and durable bifunctional catalysts for the water splitting reaction in acidic media. Nanoscale Horizons, 2019, 4, 727-734.	4.1	43
17	NiOOH Exfoliation-Free Nickel Octahedra as Highly Active and Durable Electrocatalysts Toward the Oxygen Evolution Reaction in an Alkaline Electrolyte. ACS Applied Materials & Samp; Interfaces, 2018, 10, 10115-10122.	4.0	68
18	Recent advances in electrocatalysts toward the oxygen reduction reaction: the case of PtNi octahedra. Nanoscale, 2018, 10, 20073-20088.	2.8	60

JINWHAN JOO

#	Article	IF	CITATION
19	An IrRu alloy nanocactus on Cu _{2â^x} S@IrS _y as a highly efficient bifunctional electrocatalyst toward overall water splitting in acidic electrolytes. Journal of Materials Chemistry A, 2018, 6, 16130-16138.	5.2	58
20	Nanodendrites of platinum-group metals for electrocatalytic applications. Nano Research, 2018, 11, 6111-6140.	5.8	54
21	Photon energy transfer by quantum dots in organic–inorganic hybrid solar cells through FRET. Journal of Materials Chemistry A, 2016, 4, 10444-10453.	5.2	24