List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2941070/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cultivating the Passion to Build Heterocycles from 1,2â€Diazaâ€1,3â€dienes: the Force of Imagination. European Journal of Organic Chemistry, 2009, 2009, 3109-3127.	2.4	139
2	Straightforward Access to Pyrazines, Piperazinones, and Quinoxalines by Reactions of 1,2-Diaza-1,3-butadienes with 1,2-Diamines under Solution, Solvent-Free, or Solid-Phase Conditions. Journal of Organic Chemistry, 2006, 71, 5897-5905.	3.2	109
3	Synthesis of Functionalized Pyrroles via Catalyst- and Solvent-Free Sequential Three-Component Enamineâ ^{~^} Azoene Annulation. Journal of Organic Chemistry, 2011, 76, 2860-2866.	3.2	72
4	Interceptive [4 + 1] Annulation of in Situ Generated 1,2-Diaza-1,3-dienes with Diazo Esters: Direct Access to Substituted Mono-, Bi-, and Tricyclic 4,5-Dihydropyrazoles. Journal of Organic Chemistry, 2014, 79, 8331-8338.	3.2	71
5	Copper(II)/Copper(I)-Catalyzed Aza-Michael Addition/Click Reaction of in Situ Generated α-Azidohydrazones: Synthesis of Novel PyrazoloneⰒTriazole Framework. Organic Letters, 2010, 12, 468-471.	4.6	62
6	An Efficient One-Pot, Three-Component Synthesis of 5-Hydrazinoalkylidene Rhodanines from 1,2-Diaza-1,3-dienes. Organic Letters, 2009, 11, 2265-2268.	4.6	61
7	A Novel Solvent-Free Approach to Imidazole Containing Nitrogen-Bridgehead Heterocycles. Organic Letters, 2013, 15, 3646-3649.	4.6	55
8	`Inverse-Electron-Demand'Diels-Alder Reactions of (E)-3-Diazenylbut-2-enes in Water. Helvetica Chimica Acta, 2001, 84, 513-525.	1.6	49
9	Reaction of Some 1,2-Diaza-1,3-butadienes with Activated Methine Compounds. A Straightforward Entry to 1,4-Dihydropyridazine, Pyridazine, and 4,5(4H,5H)-Cyclopropylpyrazole Derivatives. Journal of Organic Chemistry, 1998, 63, 9880-9887.	3.2	45
10	Flexible Protocol for the Chemo- and Regioselective Building of Pyrroles and Pyrazoles by Reactions of Danishefsky's Dienes with 1,2-Diaza-1,3-butadienes. Organic Letters, 2008, 10, 1983-1986.	4.6	41
11	Synthesis of Densely Functionalized 3a,4-Dihydro-1H-Pyrrolo[1,2-b]Pyrazoles via Base Mediated Domino Reaction of Vinyl Malononitriles with 1,2-Diaza-1,3-dienes. Organic Letters, 2013, 15, 2624-2627.	4.6	37
12	Divergent Construction of Pyrazoles via Michael Addition of <i>N</i> -Arylhydrazones to 1,2-Diaza-1,3-dienes. Organic Letters, 2015, 17, 2014-2017.	4.6	37
13	Palladium(II)-Catalyzed Intramolecular Oxidative C–H/C–H Cross-Coupling Reaction of C3,N-Linked Biheterocycles: Rapid Access to Polycyclic Nitrogen Heterocycles. Organic Letters, 2017, 19, 608-611.	4.6	35
14	Improved Synthesis of Pyrroles and Indolesvia Lewis Acid-Catalyzed Mukaiyama–Michael-Type Addition/Heterocyclization of Enolsilyl Derivatives on 1,2-Diaza-1,3-Butadienes. Role of the Catalyst in the Reaction Mechanism. Advanced Synthesis and Catalysis, 2007, 349, 907-915.	4.3	33
15	A Novel Assembly of Substituted Pyrroles by Acidâ€Catalyzed Sequential Threeâ€Component Reaction of Amines, Alkynoates, and 1,2â€Diazaâ€1,3â€dienes. Advanced Synthesis and Catalysis, 2011, 353, 1519-1524.	4.3	32
16	Straightforward Entry into 5-Hydroxy-1-aminopyrrolines and the Corresponding Pyrroles from 1,2-Diaza-1,3-butadienes. Journal of Organic Chemistry, 2002, 67, 8178-8181.	3.2	31
17	Assembly of fully substituted 2,5-dihydrothiophenes <i>via</i> a novel sequential multicomponent reaction. Organic Chemistry Frontiers, 2018, 5, 2108-2114.	4.5	31
18	Zinc(II) Triflateâ€Catalyzed Divergent Synthesis of Polyfunctionalized Pyrroles. Advanced Synthesis and Catalysis, 2011, 353, 595-605.	4.3	30

#	Article	IF	CITATIONS
19	Solvent-Free Reaction of Some 1,2-Diaza-1,3-butadienes with Phosphites:Â Environmentally Friendly Access to New Diazaphospholes andE-Hydrazonophosphonates. Journal of Organic Chemistry, 2005, 70, 4033-4037.	3.2	29
20	Expeditious Synthesis of New 1,2,3-Thiadiazoles and 1,2,3-Selenadiazoles from 1,2-Diaza-1,3-butadienes via Hurdâ~'Mori-Type Reactions. Journal of Organic Chemistry, 2003, 68, 1947-1953.	3.2	28
21	α-Aminoester-Derived Imidazoles by 1,5-Electrocyclization of Azavinyl Azomethine Ylides. Organic Letters, 2009, 11, 2840-2843.	4.6	28
22	Solid-phase synthesis of 4-triphenylphosphoranylidene-4,5-dihydropyrazol-5-ones, 4-aminocarbonyl-pyrroles, 4-methoxy-1H-pyrazol-5(2H)-ones and 2-thiazolin-4-ones from polymer-bound 1,2-diaza-1,3-butadienes. Tetrahedron, 2001, 57, 5855-5863.	1.9	27
23	Efficient Synthesis and Environmentally Friendly Reactions of PEG-Supported 1,2-Diaza-1,3-butadiene. Organic Letters, 2005, 7, 2469-2471.	4.6	26
24	Lewis Acidâ€Catalyzed Synthesis of Functionalized Pyrroles. Advanced Synthesis and Catalysis, 2009, 351, 715-719.	4.3	25
25	Oneâ€Pot Synthesis of Biheterocycles Based on Indole and Azole Scaffolds Using Tryptamines and 1,2â€Diazaâ€1,3â€dienes as Building Blocks. European Journal of Organic Chemistry, 2016, 2016, 3193-3199.	2.4	25
26	First preparation and reaction of polymer-bound 1,2-diaza-1,3-butadienes. A convenient entry to 4-triphenylphosphoranylidene-4,5-dihydropyrazol-5-ones. Tetrahedron Letters, 1999, 40, 9277-9280.	1.4	23
27	A New Convenient Liquid- and Solid-Phase Synthesis of Quinoxalines from (E)-3-Diazenylbut-2-enes. Helvetica Chimica Acta, 2001, 84, 2379-2386.	1.6	23
28	Diversityâ€Oriented Synthesis of Functionalized 1â€Aminopyrroles by Regioselective Zinc Chlorideâ€Catalyzed, Oneâ€Pot â€~Conjugate Addition/Cyclization' Reactions of 1,3â€Bis(silyl enol ethers) v 1,2â€Diazaâ€1,3â€butadienes. Advanced Synthesis and Catalysis, 2008, 350, 1331-1336.	vit h. 3	22
29	Aspects of the chemistry of functionalized 1-phenylpyrazoles available from 1,2-diaza-1,3-butadienes and 2-phenylazo-1,3-dicarbonyl compounds. Tetrahedron Letters, 1999, 40, 3891-3894.	1.4	21
30	Easy Access to (E,Z)-β-Nitro-α,β-olefinated Hydrazones, 6-Oxo-1,6-dihydropyridazines, and 4-Chloro-1-aminopyrroles by Domino Reactions of 1,2-Diaza-1,3-butadienes with Halogen-Coactivated Methylene or Methine Compounds. Journal of Organic Chemistry, 1999, 64, 9653-9657.	3.2	20
31	Access to New 2-Oxofuro[2,3-b]pyrroles and 2-Methylenepyrroles through the Reaction of 1,2-Diaza-1,3-butadienes and γ-Ketoesters. Journal of Organic Chemistry, 2004, 69, 2686-2692.	3.2	20
32	Organocatalyzed synthesis of chiral non-racemic 1,4-dihydropyridazines. Tetrahedron: Asymmetry, 2010, 21, 617-622.	1.8	20
33	Divergent Regioselective Synthesis of 2,5,6,7-Tetrahydro-1 <i>H</i> -1,4-diazepin-2-ones and 5 <i>H</i> -1,4-Benzodiazepines. Journal of Organic Chemistry, 2011, 76, 8320-8328.	3.2	20
34	Unexpected regioselectivity in the reaction between cycloalkenyl-1-diazenes and thioamides: useful entry to fused cycloalkyl-thiazoline and cycloalkyl-thiazoline–pyrazole systems. Tetrahedron Letters, 2007, 48, 2449-2451.	1.4	19
35	Simple construction of fused and spiro nitrogen/sulfur containing heterocycles by addition of thioamides or thioureas on cycloalkenyl-diazenes: examples of click chemistry. Tetrahedron, 2008, 64, 3837-3858.	1.9	19
36	Regioselective Formation of 5-Methylene-6-methoxy-1,4,5,6-tetrahydropyridazines from the [4+2]-Cycloaddition Reaction of In Situ Generated 1,2-Diaza-1,3-dienes with Methoxyallene. Synlett, 2015, 26, 193-196.	1.8	18

#	Article	IF	CITATIONS
37	Synthesis of novel symmetrical 2-oxo-spiro[indole-3,4′-pyridines] by a reaction of oxindoles with 1,2-diaza-1,3-dienes. Organic and Biomolecular Chemistry, 2015, 13, 277-282.	2.8	18
38	2-Oxohydrazones, 4-Hydrazono-1H-pyrazol-5-ones, and Derived Products by Air Oxidation of 1,2-Hydrazino-hydrazones. Journal of Organic Chemistry, 2000, 65, 2820-2823.	3.2	17
39	Double Michael addition/aza-cyclization: a valuable sequence for the construction of symmetrical and unsymmetrical spirobarbiturate-pyridines. Tetrahedron, 2015, 71, 7282-7292.	1.9	17
40	Synthesis of Polycyclic Fused Indoline Scaffolds through a Substrate-Guided Reactivity Switch. Journal of Organic Chemistry, 2020, 85, 11409-11425.	3.2	17
41	Regioselective Synthesis of Stable 2-(Trifluoromethyl)-2,3-dihydro-1H-pyrrol-2-ols and Derived Fluorinated Heterocycles. Synthesis, 2001, 2001, 1837-1845.	2.3	16
42	Regioselective [1N+2C+2C] Assembly of Fully Decorated Pyrroles from Primary Amines, 1,2â€Diazaâ€1,3â€dienes, and 2,3â€ÂAllenoates. European Journal of Organic Chemistry, 2015, 2015, 7154-7159	9. ^{2.4}	16
43	Divergent Approach to Thiazolylidene Derivatives: A Perspective on the Synthesis of a Heterocyclic Skeleton from β-Amidothioamides Reactivity. Journal of Organic Chemistry, 2017, 82, 9773-9778.	3.2	16
44	Synthesis and study of three hydroxypyrazole-based ligands: A ratiometric fluorescent sensor for Zn(II). Journal of Luminescence, 2018, 195, 193-200.	3.1	16
45	Facile, Odourless, Quantitative Synthesis of 3â€Hydroxyâ€3,4â€dihydroâ€2 <i>H</i> â€1,4â€thiazines. Asian Jourr Organic Chemistry, 2016, 5, 705-709.	al of 2.7	15
46	Zn(II)-Catalyzed Addition of Aromatic/Heteroaromatic C(sp2)–H to Azoalkenes: A Polarity-Reversed Arylation of Carbonyl Compounds. Organic Letters, 2019, 21, 4388-4391.	4.6	15
47	Reactions of 1,2-diaza-1,3-dienes with thiol derivatives: a versatile construction of nitrogen/sulfur containing heterocycles. Tetrahedron, 2008, 64, 9264-9274.	1.9	14
48	Novel Tetrahydropyridazines by Unusual Aza-Diels-Alder Reaction of Electron-poor 1,2-Diaza-1,3-dienes with Electron-poor Alkenes Under Solvent Free Conditions. Current Organic Synthesis, 2013, 10, 631-639.	1.3	14
49	Polycyclic Indolines by an Acidâ€Mediated Intramolecular Dearomative Strategy: Reversing Indole Reactivity in the Pictetâ€5penglerâ€Type Reaction. Advanced Synthesis and Catalysis, 2018, 360, 4060-4067.	4.3	14
50	Regioselective synthesis of spiro-cyclopropanated 1-aminopyrrol-2-ones by Bi(OTf)3-catalyzed one-pot †Mukaiyama–Michael addition/cyclization/ring-contraction' reactions of 1,2-bis(trimethylsilyloxy)cyclobutene with 1,2-diaza-1,3-butadienes. Tetrahedron, 2009, 65, 5456-5461.	1.9	13
51	1,2â€Diazaâ€1,3â€dieneâ€Based Multicomponent Reactions in Sequential Protocols to Synthesize Arylaminoâ€5â€hydrazonothiopheneâ€3â€carboxylates. European Journal of Organic Chemistry, 2018, 2018, 6548-6556.	2.4	13
52	Synthesis and biological evaluation of novel heteroring-annulated pyrrolino-tetrahydroberberine analogues as antioxidant agents. Bioorganic and Medicinal Chemistry, 2018, 26, 5037-5044.	3.0	12
53	Study of the nucleophilic behaviour of N-phenylbenzamidine towards 1,2-diaza-1,3-dienes: domino reactions for imidazole scaffolds. Tetrahedron, 2010, 66, 5121-5129.	1.9	11
54	Novel and Convenient Synthesis of 1,4-Dihydropyridazines and Pyridazines from Aminocarbonylazoalkenes. Synlett, 1997, 12, 1361-1362.	1.8	10

#	Article	IF	CITATIONS
55	Reaction of 1,2â€Diazaâ€1,3â€butadienes with Aminophosphorus Nucleophiles: A Practical Access to New Phosphorylated Pyrazolones. European Journal of Organic Chemistry, 2008, 2008, 5965-5973.	2.4	10
56	Synthesis of Selenium-Substituted Pyrroles and Pyrazol-3-ones. Synlett, 2009, 2009, 1118-1122.	1.8	10
57	Unusual [4+2]-Cycloaddition Reaction between Electron-Poor 1,2-Diaza-1,3-dienes and Electron-Poor Alkenes: Useful Entry to Novel Tetrahydropyridazines. Synlett, 2010, 2010, 1363-1366.	1.8	10
58	Reactivity of 1,2â€Diazaâ€1,3â€dienes with Azomethine Ylides: [3+4] versus [3+2] Cycloadditions. European Journal of Organic Chemistry, 2016, 2016, 4144-4151.	2.4	10
59	Chemo, regio, and stereoselectivity in olefination of hydrazone 1,4-adducts between conjugated azoalkenes and sulphur co-activated methylene compounds. Tetrahedron, 1998, 54, 7581-7594.	1.9	9
60	Heteroringâ€Annulated Pyrrolinoâ€Tetrahydroberberine Analogues. Asian Journal of Organic Chemistry, 2017, 6, 720-727.	2.7	9
61	Synthesis of new dihydroberberine and tetrahydroberberine analogues and evaluation of their antiproliferative activity on NCI-H1975 cells. Beilstein Journal of Organic Chemistry, 2020, 16, 1606-1616.	2.2	9
62	N -heterocyclic linkers from 1,2-diaza-1,3-dienes for dye-sensitized solar cells: DFT calculations, synthesis and photovoltaic performance. Dyes and Pigments, 2017, 145, 246-255.	3.7	9
63	Synthesis of Azacarbolines via PhIO ₂ -Promoted Intramolecular Oxidative Cyclization of α-Indolylhydrazones. Journal of Organic Chemistry, 2021, 86, 17918-17929.	3.2	9
64	Carbon–phosphorus bond formation and transformation in the reaction of 1,2-diaza-1,3-butadienes with alkyl phenylphosphonites. Tetrahedron, 2008, 64, 6724-6732.	1.9	8
65	Unexpected Synthesis of 2,3,5,6â€Tetrahydroâ€1 <i>H</i> â€pyrrolo[3,4â€ <i>c</i>]pyridineâ€1,3,6â€triones by a Michael Addition/CS ₂ Extrusion/Double Cyclization Sequence. European Journal of Organic Chemistry, 2017, 2017, 6291-6298.	Double 2.4	8
66	A practical and effective method for the N–N bond cleavage of N-amino-heterocycles. Organic Chemistry Frontiers, 2019, 6, 3408-3414.	4.5	8
67	Unusual Reactions Between Aromatic Carbon Supernucleophiles and 1,2â€Diazabutaâ€1,3â€dienes: Useful Routes to New Pyrazolone and Cinnoline Derivatives. European Journal of Organic Chemistry, 2008, 2008, 4357-4366.	2.4	7
68	Synthesis of Highly Functionalized 1,3-Oxathioles via an Unusual [4+1] Annulation of α,α'-Dioxothione with 1,2-Diaza-1,3-dienes. Synlett, 2012, 23, 2947-2950.	1.8	7
69	Metal and Oxidant-Free BrÃ,nsted Acid-Mediated Cascade Reaction to Substituted Benzofurans. Journal of Organic Chemistry, 2019, 84, 10814-10824.	3.2	7
70	Sequential MCR via Staudinger/Aza-Wittig versus Cycloaddition Reaction to Access Diversely Functionalized 1-Amino-1H-Imidazole-2(3H)-Thiones. Molecules, 2019, 24, 3785.	3.8	7
71	Metal and Oxidant Free Construction of Substituted―and/or Polycyclic Indoles: A Useful Alternative to Bischler and Related Syntheses. European Journal of Organic Chemistry, 2020, 2020, 5411-5424.	2.4	7
72	Straightforward Entry to New 4-Substituted-1,2,3-thiadiazoles from 1,2-Diaza-1,3-butadienes via Hurd-Mori reaction. Synlett, 2001, 2001, 0557-0559.	1.8	6

#	Article	IF	CITATIONS
73	Improved Synthesis of SubstitutedQuinoxalines from New N=N-Polymer-bound 1,2-Diaza-1,3-butadienes. Synlett, 2003, 2003, 1183-1185.	1.8	6
74	Phosphaâ€Michaelâ€Type Reactions between 1,2â€Diazaâ€1,3â€dienes and Bidentate Nucleophiles: Formation o New Mono―and Diylides and their Elaboration to Heterocycles. European Journal of Organic Chemistry, 2011, 2011, 1326-1334.	f 2.4	6
75	Reaction between Conjugated Azoalkenes and Pyrazolinones: A Precious Entry to New Conjugated Azodiene and Asymmetric 4,4′-Bipyrazole Derivatives. Chemistry Letters, 2000, 29, 984-985.	1.3	5
76	Synthesis of new cycloalkenyliden-pyrroles by domino reaction. Tetrahedron, 2009, 65, 2290-2297.	1.9	5
77	Divergent base-induced reactivity of cycloalkenyl-1-diazenes. Tetrahedron, 2010, 66, 6832-6841.	1.9	5
78	5-Methylene N-acyl dihydropyridazinium ions as novel Mannich-type acceptors in 1,4 additions of nucleophiles. Organic Chemistry Frontiers, 2018, 5, 1308-1311.	4.5	5
79	A facile protocol for the preparation of 2-carboxylated thieno [2,3- <i>b</i>] indoles: a <i>de novo</i> access to alkaloid thienodolin. Organic and Biomolecular Chemistry, 2022, 20, 4167-4175.	2.8	5
80	1-Amino-2-chloromethylene-2,3-dihydropyrroles by unusual reaction of conjugated azoalkenes with 2-chloro-1,3-dicarbonyl compounds. Tetrahedron Letters, 1997, 38, 873-874.	1.4	4
81	Double 1,4-addition of malonate to 1,2-diaza-1,3-butadienes: a useful route to previously unknown symmetric and unsymmetric 1,6-dioxo-2,7-diazaspiro[4.4]nona-3,8-dienes. New Journal of Chemistry, 2001, 25, 534-537.	2.8	4
82	Easy Oneâ€Pot Synthesis of Fused Heterocycles from 1,2â€Diazaâ€1,3â€dienes. European Journal of Organic Chemistry, 2011, 2011, 2924-2927.	2.4	3
83	FeCl3â€catalyzed formal [3 + 2] cyclodimerization of 4â€carbonylâ€1,2â€diazaâ€1,3â€dienes. European Journal o Organic Chemistry, 2021, 2021, 5202.	of 2.4	3
84	Synthesis of Tetrahydropyridazine Amino Acid Derivatives by a Formal [4+2] Cycloaddition Reaction of 1,2-Diaza-1,3-dienes with Dehydroalanine Esters Current Organic Synthesis, 2013, 10, 803-811.	1.3	3
85	Experimental and Theoretical DFT Investigations in the [2,3]-Wittig-Type Rearrangement of Propargyl/Allyl-Oxy-Pyrazolones. Molecules, 2021, 26, 6557.	3.8	3
86	Eclectic 1-Aryl-1,2-diazabuta-1,3-dienes: Valuable Tools for the Preparation of Pyrrol-2-ones, 1-Arylpyrazoles, 2-(3-Oxopyrazol-4-yl)malonates and 4-(2-Oxopyrrol-3-yl)pyrazol-3-ones. Synthesis, 2002, 2002, 1546-1552.	2.3	2
87	Domino Reaction for the Construction of New 2-Oxo[1,2,4]triazolo[5,1-c][1,4]thiazines. Synlett, 2009, 2009, 735-738.	1.8	2
88	Divergent Behavior of the Reactions Between 1,2-Diaza-1,3-dienes and 2,5- Dioxoimidazolidin-4-ylidene-succinates. Current Organic Synthesis, 2013, 10, 472-480.	1.3	2
89	Easy Access to Indoleâ€based Bi‣ulfurylateâ€Heterocyclic Scaffolds. Asian Journal of Organic Chemistry, 2022, 11, .	2.7	2
90	Different Behavior of the Reaction between 1,2-Diaza-1,3-butadienes and 1,2-Diamines under Solvent or Solvent-Free Conditions, Synlett. 2005, 2005, 1474-1476.	1.8	1

#	Article	IF	CITATIONS
91	Facile Synthesis of New Substituted Tetrahydro-1H-indoles. Synlett, 2006, 2006, 2735-2738.	1.8	1
92	Regioselective Synthesis of New 1-Aminopyrroles and 1-Amino-4,5,6,7-tetrahydroindoles by One-Pot â€ ⁻ Conjugate Addition/Cyclization' Reactions of 1,3-Bis(silyl enol ethers) with 1,2-Diaza-1,3-butadienes. Synlett, 2007, 2007, 2965-2968.	1.8	1
93	Construction of Unusual Indole-Based Heterocycles from Tetrahydro-1H-pyridazino[3,4-b]indoles. Molecules, 2020, 25, 4124.	3.8	1
94	Straightforward Entry into 5-Hydroxy-1-aminopyrrolines and the Corresponding Pyrroles from 1,2-Diaza-1,3-butadienes ChemInform, 2003, 34, no.	0.0	0
95	Expeditious Synthesis of 1,2-Diaminoimidazoles under Solvent-Free Conditions. Synlett, 2004, 2004, 549-551.	1.8	0
96	An Alternative Route to Pyrrolotriazoles and other N-Bridgehead Heterocycles. Synlett, 2006, 2006, 1734-1738.	1.8	0
97	Unusual Peptidomimetic Reaction of 1,2-Diaza-1,3-butadienes: Straightforward Entry to 2,3,6-Triazabicyclo[3.2.1]oct-3-enes, 5-Oxo-4,5-dihydro-2-pyrazines, and 2-Carbonyl-2-oxopropylaminoacetates. Synlett, 2006, 2006, 2403-2406.	1.8	0
98	Unexpected Ring Closure between Hydrazono and Nitro Groups: A Useful Synthesis of Substituted Pyrazole N-Oxides. Synlett, 2006, 2006, 2731-2734.	1.8	0
99	Synthesis of new polyazines by 1,4 photochemical or anionic polymerization of 1,2-diaza-1,3-butadienes. European Polymer Journal, 2008, 44, 2545-2550.	5.4	0