Carlos C Romo

List of Publications by Citations

Source: https://exaly.com/author-pdf/29407/carlos-c-romao-publications-by-citations.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

g-index

5.68

L-index

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

205 8,221 52 papers citations h-index

220 8,641 4.4 ext. papers ext. citations avg, IF

#	Paper	IF	Citations
205	Rhenium(VII) Oxo and Imido Complexes: Synthesis, Structures, and Applications. <i>Chemical Reviews</i> , 1997 , 97, 3197-3246	68.1	461
204	Developing drug molecules for therapy with carbon monoxide. <i>Chemical Society Reviews</i> , 2012 , 41, 357	1 5 8835	346
203	Octahedral bipyridine and bipyrimidine dioxomolybdenum(VI) complexes: characterization, application in catalytic epoxidation, and density functional mechanistic study. <i>Chemistry - A European Journal</i> , 2002 , 8, 2370-83	4.8	214
202	CORM-3 reactivity toward proteins: the crystal structure of a Ru(II) dicarbonyl-lysozyme complex. <i>Journal of the American Chemical Society</i> , 2011 , 133, 1192-5	16.4	160
201	MCM-41 functionalized with bipyridyl groups and its use as a support for oxomolybdenum(VI) catalysts. <i>Journal of Materials Chemistry</i> , 2002 , 12, 1735-1742		150
200	A Simple Entry to (া5-C5R5)chlorodioxomolybdenum(VI) Complexes (R = H, CH3, CH2Ph) and Their Use as Olefin Epoxidation Catalysts. <i>Organometallics</i> , 2003 , 22, 2112-2118	3.8	140
199	Antimicrobial action of carbon monoxide-releasing compounds. <i>Antimicrobial Agents and Chemotherapy</i> , 2007 , 51, 4303-7	5.9	135
198	The nature of the indenyl effect. Chemistry - A European Journal, 2002, 8, 868-75	4.8	134
197	Multiple bonds between main-group elements and transition metals. 113. Simple and efficient synthesis of methyltrioxorhenium(VII): a general method. <i>Inorganic Chemistry</i> , 1992 , 31, 4431-4432	5.1	130
196	A novel method for the reduction of sulfoxides and pyridine N-oxides with the system silane/MoO2Cl2. <i>Tetrahedron</i> , 2006 , 62, 9650-9654	2.4	125
195	Highly chemo- and regioselective reduction of aromatic nitro compounds using the system silane/oxo-rhenium complexes. <i>Journal of Organic Chemistry</i> , 2009 , 74, 6960-4	4.2	114
194	Spontaneous CO release from Ru(II)(CO)2-protein complexes in aqueous solution, cells, and mice. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 1172-5	16.4	102
193	[MoO2Cl2] as catalyst for hydrosilylation of aldehydes and ketones. <i>Chemical Communications</i> , 2005 , 213-4	5.8	102
192	Silane/MoO2Cl2 as an efficient system for the reduction of esters. <i>Journal of Molecular Catalysis A</i> , 2006 , 253, 96-98		101
191	Reactive oxygen species mediate bactericidal killing elicited by carbon monoxide-releasing molecules. <i>Journal of Biological Chemistry</i> , 2011 , 286, 26708-17	5.4	97
190	Reduction of amides with silanes catalyzed by MoO2Cl2. <i>Journal of Molecular Catalysis A</i> , 2007 , 272, 60-	63	96
189	Loading and delivery of sertraline using inorganic micro and mesoporous materials. <i>European Journal of Pharmaceutics and Biopharmaceutics</i> , 2007 , 66, 357-65	5.7	95

(2004-2000)

188	Lewis base adducts of bis-(halogeno)dioxomolybdenum(VI): syntheses, structures, and catalytic applications. <i>Journal of Molecular Catalysis A</i> , 2000 , 151, 147-160		94	
187	Molybdenum(VI)cis-dioxo complexes bearing sugar derived chiral Schiff-base ligands: synthesis, characterization, and catalytic applications. <i>Dalton Transactions</i> , 2003 , 3736-3742	4.3	90	
186	A novel method for the reduction of imines using the system silane/MoO2Cl2. <i>Tetrahedron Letters</i> , 2005 , 46, 8881-8883	2	90	
185	Periplasmic nitrate reductase revisited: a sulfur atom completes the sixth coordination of the catalytic molybdenum. <i>Journal of Biological Inorganic Chemistry</i> , 2008 , 13, 737-53	3.7	86	
184	Olefin epoxidation with tert-butyl hydroperoxide catalyzed by MoO2X2L complexes: a DFT mechanistic study. <i>Dalton Transactions</i> , 2006 , 1383-9	4.3	80	
183	Mononuclear and Binuclear Cyclopentadienyl Oxo Molybdenum and Tungsten Complexes: Syntheses and Applications in Olefin Epoxidation Catalysis. <i>Organometallics</i> , 2005 , 24, 2582-2589	3.8	79	
182	Selective and mild oxidation of sulfides to sulfoxides or sulfones using H2O2 and Cp?Mo(CO)3Cl as catalysts. <i>Tetrahedron Letters</i> , 2008 , 49, 4708-4712	2	78	
181	Reduction of sulfoxides with boranes catalyzed by MoO2Cl2. <i>Tetrahedron Letters</i> , 2007 , 48, 9176-9179	2	77	
180	A novel carbon monoxide-releasing molecule fully protects mice from severe malaria. <i>Antimicrobial Agents and Chemotherapy</i> , 2012 , 56, 1281-90	5.9	76	
179	Organorhenium(VII) and organomolybdenum(VI) oxides: synthesis and application in oxidation catalysis. <i>Applied Organometallic Chemistry</i> , 2001 , 15, 43-50	3.1	76	
178	(Dimethyl)dioxomolybdenum(VI) complexes: syntheses and catalytic applications. <i>Journal of Molecular Catalysis A</i> , 2000 , 164, 25-38		73	
177	MoO2Cl2 as a Novel Catalyst for CP Bond Formation and for Hydrophosphonylation of Aldehydes. <i>Organometallics</i> , 2009 , 28, 6206-6212	3.8	71	
176	Hydrogen activation by high-valent oxo-molybdenum(VI) and -rhenium(VII) and -(V) compounds. <i>Dalton Transactions</i> , 2008 , 1727-33	4.3	71	
175	Generation of Carbon Monoxide Releasing Molecules (CO-RMs) as Drug Candidates for the Treatment of Acute Liver Injury: Targeting of CO-RMs to the Liver. <i>Organometallics</i> , 2012 , 31, 5810-582	2 ^{3.8}	69	
174	Kinetics of Cyclooctene Epoxidation with tert-Butyl Hydroperoxide in the Presence of [MoO2X2L]-Type Catalysts (L = Bidentate Lewis Base). <i>European Journal of Inorganic Chemistry</i> , 2005 , 2005, 1716-1723	2.3	68	
173	Catalyzing aldehyde hydrosilylation with a molybdenum(VI) complex: a density functional theory study. <i>Chemistry - A European Journal</i> , 2007 , 13, 3934-41	4.8	66	
172	Chiral dioxomolybdenum(VI) complexes for enantioselective alkene epoxidation. <i>Journal of Organometallic Chemistry</i> , 2001 , 626, 1-10	2.3	65	
171	Dichloro and dimethyl dioxomolybdenum(VI)diazabutadiene complexes as catalysts for the epoxidation of olefins. <i>New Journal of Chemistry</i> , 2004 , 28, 308-313	3.6	63	

170	Catalytic olefin epoxidation with cyclopentadienylEnolybdenum complexes in room temperature ionic liquids. <i>Tetrahedron Letters</i> , 2005 , 46, 47-52	2	63
169	(Eta2-alkyne)methyl(dioxo)rhenium complexes as aldehyde-olefination catalysts. <i>Journal of the American Chemical Society</i> , 2003 , 125, 2414-5	16.4	62
168	Bis-acetonitrile(dibromo)dioxomolybdenum(VI) and derivatives: synthesis, reactivity, structures and catalytic applications. <i>Journal of Organometallic Chemistry</i> , 1999 , 583, 3-10	2.3	62
167	Highly Efficient Reduction of Sulfoxides with the System Borane/Oxo-rhenium Complexes Organometallics, 2010 , 29, 5517-5525	3.8	61
166	Molybdenum(VI) cis-dioxo complexes bearing (poly)pyrazolyl-methane and -borate ligands: syntheses, characterization and catalytic applications. <i>Dalton Transactions RSC</i> , 2001 , 1332-1337		61
165	Epoxidation of cyclooctene catalyzed by dioxomolybdenum(VI) complexes in ionic liquids. <i>Journal of Molecular Catalysis A</i> , 2004 , 218, 5-11		60
164	Reduction of carbonyl groups by high-valent rhenium oxides. <i>Journal of Molecular Catalysis A</i> , 2005 , 236, 107-112		60
163	Chiral bis(oxazoline) and pyridyl alcoholate dioxo-molybdenum(VI) complexes: synthesis, characterization and catalytic examinations. <i>Journal of Organometallic Chemistry</i> , 2001 , 621, 207-217	2.3	60
162	Mixed-Ring and Indenyl Analogs of Molybdenocene and Tungstenocene: Preparation and Characterization. <i>Organometallics</i> , 1995 , 14, 3901-3919	3.8	60
161	Towards improved therapeutic CORMs: understanding the reactivity of CORM-3 with proteins. <i>Current Medicinal Chemistry</i> , 2011 , 18, 3361-6	4.3	59
160	The P eroxo Perrhenic AcidlH4Re2O13: An Oxygen-Rich Metal Peroxide and Oxidation Catalyst. <i>Chemistry - A European Journal</i> , 1996 , 2, 168-173	4.8	59
159	Synthesis, characterization, and reactions of tetrakis(nitrile)chromium(II) tetrafluoroborate complexes <i>Journal of the Chemical Society Dalton Transactions</i> , 1998 , 1293-1298		58
158	Prevention of clinical and histological signs of proteolipid protein (PLP)-induced experimental allergic encephalomyelitis (EAE) in mice by the water-soluble carbon monoxide-releasing molecule (CORM)-A1. <i>Clinical and Experimental Immunology</i> , 2011 , 163, 368-74	6.2	57
157	Dioxomolybdenum(VI) complexes as catalysts for the hydrosilylation of aldehydes and ketones. <i>Dalton Transactions</i> , 2006 , 1842-6	4.3	57
156	Mesoporous Silicas Modified with Dioxomolybdenum(VI) Complexes: Synthesis and Catalysis. <i>European Journal of Inorganic Chemistry</i> , 2000 , 2000, 2263-2270	2.3	55
155	A chiral menthyl cyclopentadienyl molybdenum tricarbonyl chloro complex: Synthesis, heterogenization on MCM-41/MCM-48 and application in olefin epoxidation catalysis. <i>Journal of Organometallic Chemistry</i> , 2006 , 691, 3137-3145	2.3	54
154	Characterization of a versatile organometallic pro-drug (CORM) for experimental CO based therapeutics. <i>Dalton Transactions</i> , 2013 , 42, 5985-98	4.3	52
153	Mehrfachbindungen zwischen Hauptgruppenelementen und Bergangsmetallen, CXIV. Organorhenium(VII)-oxide. <i>Chemische Berichte</i> , 1993 , 126, 45-50		52

(1995-2012)

152	New insights into the chemistry of fac-[Ru(CO)]##+ fragments in biologically relevant conditions: the CO releasing activity of [Ru(CO)[Cl[[1,3-thiazole)], and the X-ray crystal structure of its adduct with lysozyme. <i>Journal of Inorganic Biochemistry</i> , 2012 , 117, 285-91	4.2	51
151	Ligand Dependence of the Indenyl Ring Slippage in [(ြ5-Ind)MoL2(CO)2]0,+ Complexes: Experimental and Theoretical Studies. <i>Organometallics</i> , 1998 , 17, 2597-2611	3.8	51
150	A contribution to the rational design of Ru(CO)3Cl2L complexes for in vivo delivery of CO. <i>Dalton Transactions</i> , 2015 , 44, 5058-75	4.3	50
149	Studies on olefin epoxidation with t-BuOOH catalysed by dioxomolybdenum(VI) complexes of a novel chiral pyridyl alcoholate ligand. <i>New Journal of Chemistry</i> , 2001 , 25, 959-963	3.6	50
148	Therapeutic potential of carbon monoxide in multiple sclerosis. <i>Clinical and Experimental Immunology</i> , 2012 , 167, 179-87	6.2	49
147	Examining the antimicrobial activity and toxicity to animal cells of different types of CO-releasing molecules. <i>Dalton Transactions</i> , 2016 , 45, 1455-66	4.3	48
146	Synthesis, bonding and dynamic behavior of fac-[Mo(II)(CO)2(B-allyl)] derivatives. <i>Journal of Organometallic Chemistry</i> , 2001 , 632, 197-208	2.3	48
145	Alkyl- and Arylrhenium Trioxides. <i>Angewandte Chemie International Edition in English</i> , 1991 , 30, 185-187		47
144	The effect of the sixth sulfur ligand in the catalytic mechanism of periplasmic nitrate reductase. Journal of Computational Chemistry, 2009 , 30, 2466-84	3.5	46
143	CpMo(CO)3Cl as a precatalyst for the epoxidation of olefins. <i>Catalysis Letters</i> , 2005 , 101, 127-130	2.8	46
142	Synthesis and catalytic application of octahedral lewis base adducts of dichloro and dialkyl dioxotungsten(VI). <i>Inorganic Chemistry</i> , 2002 , 41, 4468-77	5.1	45
141	MoO2Cl2 as a novel catalyst for Friedel@rafts acylation and sulfonylation. <i>Tetrahedron Letters</i> , 2009 , 50, 1407-1410	2	44
140	Cationic .eta.3-allyl complexes. 16. Isotactic oligomerization of styrene in the presence of a homogeneous nickel(II) catalyst. <i>Macromolecules</i> , 1989 , 22, 998-1000	5.5	44
139	Molybdenum(VI) catalysts obtained from B-allyl dicarbonyl precursors: synthesis, characterization and catalytic performance in cyclooctene epoxidation. <i>Dalton Transactions</i> , 2012 , 41, 3474-84	4.3	43
138	Stepwise hapticity changes in sequential one-electron redox reactions of indenyl-molybdenum complexes: combined electrochemical, ESR, X-ray, and theoretical studies. <i>Journal of the American Chemical Society</i> , 2001 , 123, 10595-606	16.4	43
137	Synthesis, characterization and catalytic studies of bis(chloro)dioxomolybdenum(VI)-chiral diimine complexes. <i>Journal of Molecular Catalysis A</i> , 2005 , 236, 1-6		42
136	Carbon monoxide abrogates ischemic insult to neuronal cells via the soluble guanylate cyclase-cGMP pathway. <i>PLoS ONE</i> , 2013 , 8, e60672	3.7	42
135	Synthesis of mixed-ring indenyl analogues of tungstenocene. <i>Journal of Organometallic Chemistry</i> , 1995 , 486, 155-161	2.3	41

134	Organotin Dxometalate Coordination Polymers as Catalysts for the Epoxidation of Olefins. <i>Journal of Catalysis</i> , 2002 , 209, 237-244	7.3	40
133	Incorporation of a (Cyclopentadienyl)molybdenum Oxo Complex in MCM-41 and Its Use as a Catalyst for Olefin Epoxidation. <i>European Journal of Inorganic Chemistry</i> , 2004 , 2004, 4914-4920	2.3	39
132	Isospecific Oligo-/Polymerization of Styrene with Soluble Cationic Nickel Complexes. The Influence of Phosphorus(III) Ligands. <i>Macromolecules</i> , 1996 , 29, 4172-4179	5.5	39
131	Activation of B-H bonds by an oxo-rhenium complex. <i>Dalton Transactions</i> , 2008 , 6686-8	4.3	38
130	Synthesis of Butyrolactones by a Baeyer Villiger Oxidation with Hydrogen Peroxide, Catalysed by Methyltrioxorhenium. <i>European Journal of Organic Chemistry</i> , 1999 , 1999, 1767-1770	3.2	38
129	Stepwise Synthesis of Molybdenocene and Mixed-Ring Indenyl Analogs. <i>Organometallics</i> , 1994 , 13, 429-	438	38
128	Cationic benzyl nickel complexes as homogeneous catalysts for styrene oligomerization. X-ray crystal structure of [Ni(B-CH2C6H5)(PPh3)2]PF6 [ICH2CI2. <i>Polyhedron</i> , 1989 , 8, 2449-2457	2.7	38
127	Inhibition of nitric oxide-stimulated vasorelaxation by carbon monoxide-releasing molecules. <i>Arteriosclerosis, Thrombosis, and Vascular Biology</i> , 2011 , 31, 2570-6	9.4	37
126	Preparation and catalytic studies of bis(halogeno)dioxomolybdenum(VI)-diimine complexes. Journal of Molecular Catalysis A, 2005 , 227, 67-73		37
125	Synthesis, characterization and antitumor activity of 1,2-disubstituted ferrocenes and cyclodextrin inclusion complexes. <i>Journal of Organometallic Chemistry</i> , 2008 , 693, 675-684	2.3	36
124	Dioxo-molybdenum(VI) and -tungsten(VI) BINOL and alkoxide complexes: Synthesis and catalysis in sulfoxidation, olefin epoxidation and hydrosilylation of carbonyl groups. <i>Inorganica Chimica Acta</i> , 2008 , 361, 1915-1921	2.7	36
123	Encapsulation of half-sandwich complexes of molybdenum with \psicologyco		35
122	Cyclopentadienyl molybdenum dicarbonyl B-allyl complexes as catalyst precursors for olefin epoxidation. Crystal structures of Cp?Mo(CO)2(B-C3H5) (Cp?压-C5H4Me, 压-C5Me5). <i>Journal of Organometallic Chemistry</i> , 2010 , 695, 2311-2319	2.3	34
121	Ring slippage in indenyl derivatives of molybdenum and tungsten. <i>Journal of Organometallic Chemistry</i> , 1996 , 508, 169-181	2.3	34
12 0	Cationic B-allylmetal complexes, 12. Oligomerization of styrene with cationic allylnickel compounds: Catalysts, products and the influence of phosphines. <i>Die Makromolekulare Chemie</i> , 1989 , 190, 2773-2787		34
119	Interactions of Cationic and Neutral Molybdenum Complexes with \(\bar{B}\)Cyclodextrin Host Molecules. <i>Organometallics</i> , 2001 , 20, 2191-2197	3.8	33
118	Multiple bonds between main-group elements and transition metals. <i>Journal of Organometallic Chemistry</i> , 1994 , 481, 227-234	2.3	32
117	Organochromium Ecomplexes VI. The preparation of Cp?(B-allyl)2Cr compounds and their reactions with donor ligands. <i>Polyhedron</i> , 1993 , 12, 2651-2662	2.7	32

116	Synthesis and Structural Characterization of Novel Oxorhenium(V) Complexes Containing N-Heterocyclic Carbenes. <i>European Journal of Inorganic Chemistry</i> , 2004 , 2004, 3305-3309	2.3	31
115	Multiple Bonds between Transition Metals and Main-Group Elements. 145. Coordination Chemistry of Dirhenium Heptaoxide: Covalent Adducts and "Ionic Perrhenyl-Perrhenates". <i>Inorganic Chemistry</i> , 1995 , 34, 4701-4707	5.1	31
114	Chlorotrioxorhenium. Neue Synthesen, Reaktionen und Derivate. <i>Chemische Berichte</i> , 1994 , 127, 47-54		31
113	Alkyl- und Arylrheniumtrioxide. <i>Angewandte Chemie</i> , 1991 , 103, 183-185	3.6	31
112	Cr(.eta.3-C3H5)2(.eta.5-C5H5): preparation, structure and reactions. <i>Organometallics</i> , 1986 , 5, 1268-126	5 9 3.8	31
111	Oxorhenium complexes as aldehyde-olefination catalysts. <i>Chemistry - A European Journal</i> , 2004 , 10, 631	34281	29
110	MoO2Cl2 as a novel catalyst for the synthesis of ⊞minophosphonates. <i>Catalysis Communications</i> , 2011 , 12, 337-340	3.2	28
109	⊕Cyclodextrin and permethylated ⊕cyclodextrin inclusion compounds of a cyclopentadienyl molybdenum tricarbonyl complex and their use as cyclooctene epoxidation catalyst precursors. <i>Inorganica Chimica Acta</i> , 2006 , 359, 4757-4764	2.7	28
108	Synthesis and characterization of the inclusion compound of a ferrocenyldiimine dioxomolybdenum complex with heptakis-2,3,6-tri-O-methyl-\(\psi \) cyclodextrin. <i>Inorganica Chimica Acta</i> , 2005 , 358, 981-988	2.7	28
107	Nucleophilic and electrophilic reactions of C5 cyclo-polyenes coordinated to the [CpMoL2]n+ fragment (n = 1,2; L = 1/2dppe, PMe3, P(OMe)3, CO). <i>Journal of Organometallic Chemistry</i> , 1997 , 544, 257-276	2.3	27
106	Mehrfachbindungen zwischen Hauptgruppenelementen und Bergangsmetallen. CXLIII. Indenyltrioxorhenium(VII): Organometalloxid mit dynamischer struktur. <i>Journal of Organometallic Chemistry</i> , 1995 , 489, C56-C59	2.3	27
105	Nitrile complexes of dicyclopentadienyl-molybdenum and -tungsten: preparation and reactivity. The structure of di-IB-cyclopentadienyliodoacetonitrile-molybdenum(IV) hexafluorophosphate, [Mo(IB-C5H5)2I(NCCH3)][PF6]. <i>Journal of Organometallic Chemistry</i> , 1987 , 320, 63-81	2.3	27
104	.eta.3-Allyl complexes of molybdenum: the preparation and structure of [Mo(.eta.3-C3H5)2(.eta.5-C5H5)]. <i>Organometallics</i> , 1984 , 3, 936-937	3.8	27
103	Synthesis and spectroscopic characterisation of binuclear molybdenum-rhenium complexes. <i>Polyhedron</i> , 1998 , 17, 1091-1102	2.7	26
102	Redox-Induced Indenyl Slippage in [IndCpMoL2]2+/+/0 Complexes. <i>Organometallics</i> , 1999 , 18, 506-515	3.8	26
101	Synthesis and reactivity of molybdenocene isocyanide complexes; crystal structure of (IB-C5H5)2MoCNtBu. <i>Journal of Organometallic Chemistry</i> , 1992 , 423, 367-390	2.3	26
100	Cation Exchange Strategy for the Encapsulation of a Photoactive CO-Releasing Organometallic Molecule into Anionic Porous Frameworks. <i>Inorganic Chemistry</i> , 2016 , 55, 6525-31	5.1	25
99	Molybdenum(II) Diiodo-Tricarbonyl Complexes Containing Nitrogen Donor Ligands as Catalyst Precursors for the Epoxidation of Methyl Oleate. <i>Catalysis Letters</i> , 2012 , 142, 1218-1224	2.8	25

98	Spontaneous CO Release from Rull(CO)2Protein Complexes in Aqueous Solution, Cells, and Mice. <i>Angewandte Chemie</i> , 2015 , 127, 1188-1191	3.6	24
97	Chemoselective Sulfide and Sulfoxide Oxidations by CpMo(CO)3Cl/HOOR: a DFT Mechanistic Study. Organometallics, 2011 , 30, 1454-1465	3.8	24
96	Structural Studies of & Cyclodextrin and Permethylated & Cyclodextrin Inclusion Compounds of Cyclopentadienyl Metal Carbonyl Complexes. <i>European Journal of Inorganic Chemistry</i> , 2006 , 2006, 1662	2 - 1869	24
95	Phase equilibria of haloalkanes dissolved in ethylsulfate- or ethylsulfonate-based ionic liquids. Journal of Physical Chemistry B, 2010 , 114, 7329-37	3.4	23
94	Lewis base adducts of halogenorhenium(VII) oxides: 170 NMR spectroscopy, structural aspects and catalysis. <i>Inorganica Chimica Acta</i> , 1998 , 279, 44-50	2.7	23
93	Synthesis of ferrocenyldiimine metal carbonyl complexes and an investigation of the Mo adduct encapsulated in cyclodextrin. <i>New Journal of Chemistry</i> , 2005 , 29, 347-354	3.6	23
92	Multiple bonds between main group elements and transition metals, 155. (Hexamethylphosphoramide) methyl(oxo) bis(I2-peroxo)rhenium(VII), the first example of an anhydrous rhenium peroxo complex: crystal structure and catalytic properties. <i>Journal of Organometallic Chemistry</i> , 1996 , 520, 139-142	2.3	23
91	Ring-Functionalized Molybdenocene Complexes. <i>Organometallics</i> , 2009 , 28, 2871-2879	3.8	22
90	Mehrfachbindungen zwischen Hauptgruppenelementen und Bergangsmetallen: XCIII. Methyl- und Ethylrheniumoxide: Prparative und strukturchemische Aspekte. <i>Journal of Organometallic Chemistry</i> , 1991 , 413, 11-25	2.3	22
89	Coordination Modulation Method To Prepare New Metal-Organic Framework-Based CO-Releasing Materials. <i>ACS Applied Materials & Acs Applied & Acs A</i>	9.5	22
88	Highly efficient rhenium-catalyzed deoxygenation of sulfoxides without adding any reducing agent. <i>Tetrahedron</i> , 2012 , 68, 8194-8197	2.4	21
87	Influence of Cyclodextrins on Catalytic Olefin Epoxidation with Metal C arbonyl Compounds. Crystal Structure of the TRIMEB Complex with CpFe(CO)2Cl. <i>Organometallics</i> , 2007 , 26, 6857-6863	3.8	21
86	Mehrfachbindungen zwischen Hauptgruppenelementen und Bergangsmetallen CXLVIII. Alkinylrhenium(VII)-oxideBynthese, eigenschaften und abbaureaktionen. <i>Journal of Organometallic Chemistry</i> , 1995 , 495, 209-213	2.3	21
85	An artificial CO-releasing metalloprotein built by histidine-selective metallation. <i>Chemical Communications</i> , 2015 , 51, 3993-6	5.8	20
84	Structural preferences of cyclopentadienyl and indenyl rings in iridium(I) carbene complexes. Journal of Organometallic Chemistry, 2006 , 691, 4446-4458	2.3	20
83	Multiple Bonds between Main-Group Elements and Transition Metals. 123. Re-C Bond Homolysis in Alkyl- and Arylrhenium Trioxides: A Qualitative MO Interpretation. <i>Inorganic Chemistry</i> , 1994 , 33, 1139-1	₹4 ¹ 3	20
82	Intercalation of a molybdenum IB-allyl dicarbonyl complex in a layered double hydroxide and catalytic performance in olefin epoxidation. <i>Dalton Transactions</i> , 2013 , 42, 8231-8240	4.3	19
81	Aluminum Doped MCM-41 Nanoparticles as Platforms for the Dual Encapsulation of a CO-Releasing Molecule and Cisplatin. <i>Inorganic Chemistry</i> , 2017 , 56, 10474-10480	5.1	19

(2004-2003)

80	Preparation and characterization of organotin-oxomolybdate coordination polymers and their use in sulfoxidation catalysis. <i>Chemistry - A European Journal</i> , 2003 , 9, 2685-95	4.8	19	
79	The Carbon monoxide releasing molecule ALF-186 mediates anti-inflammatory and neuroprotective effects via the soluble guanylate cyclase [] in rats' retinal ganglion cells after ischemia and reperfusion injury. <i>Journal of Neuroinflammation</i> , 2017 , 14, 130	10.1	18	
78	New Synthetic Pathway to Mono- and Bis-indenyl Complexes of Molybdenum(IV). <i>Organometallics</i> , 1998 , 17, 5782-5788	3.8	18	
77	Molybdenum(VI) oxides bearing 1,4,7-triazacyclononane and 1,1,1-tris(aminomethyl)ethane ligands: Synthesis and catalytic applications. <i>Journal of Molecular Catalysis A</i> , 2006 , 249, 166-171		18	
76	Molecular structure, bonding, and reactions of Mo(區-C5H5)2 derivatives containing phosphorus ligands. Crystal structures of [Mo(區-C5H5)2H(PPh3)]I [I2O and [Mo(區-C5H5)2(CH3)(PPh3)][PF6]. Journal of Organometallic Chemistry, 1990 , 391, 345-360	2.3	18	
75	Mono(cyclopentadienyl)molybdenum chemistry: hydrido-, halogeno-, allylic, and butadiene derivatives of [1,2-bis(diphenylphosphino)ethane]([]cyclopentadienyl)molybdenum and related compounds. <i>Journal of the Chemical Society Dalton Transactions</i> , 1979 , 1367-1371		18	
74	Indenyl ring slippage in crown thioether complexes [IndMo(CO)2L]+ and C-S activation of trithiacyclononane: experimental and theoretical studies. <i>Dalton Transactions</i> , 2011 , 40, 10513-25	4.3	17	
73	Synthesis, Characterization and Stability of Spirodiene Complexes of Molybdenum(II): New Route to ansa-Molybdenocene and Ring-Functionalized Molybdenocene Compounds. <i>European Journal of Inorganic Chemistry</i> , 2007 , 2007, 2827-2838	2.3	17	
72	Syntheses, electrochemistry, and bonding of bis(cyclopentadienyl)molybdenum alkyl complexes. Molecular structure of Mo(.eta.5-C5H5)2(C4H9)2. Thermochemistry of Mo(.eta.5-C5H5)2R2 and Mo(.eta.5-C5H5)2L (R = CH3, C2H5, C4H9; L = ethylene, diphenylacetylene). <i>Organometallics</i> , 1991 ,	3.8	17	
71	10, 483-494 Nucleophilic attack on bent molybdenum and tungsten metallocene complexes. <i>Journal of Organometallic Chemistry</i> , 1982 , 233, 223-231	2.3	17	
70	A novel method for the reduction of alkenes using the system silane/oxo-rhenium complexes. <i>Tetrahedron Letters</i> , 2010 , 51, 1048-1051	2	16	
69	Tetracarboxylatodirhenium Complexes Linked by Axial Cyano Bridges to Metalpentacarbonyl Ligands E synthesis and Characterization. <i>European Journal of Inorganic Chemistry</i> , 1999 , 1999, 295-301	2.3	16	
68	Reaction of Spiro[2.4]hepta-4,6-diene with Molybdenum(II) Indenyl Compounds: Effects of Substitution in the Indenyl Ligand. <i>Organometallics</i> , 2011 , 30, 717-725	3.8	15	
67	Exocyclic Coordination of the IB-Fluorenyl Anion: Experimental and Theoretical Study. <i>Organometallics</i> , 1999 , 18, 3956-3958	3.8	15	
66	Nuclear magnetic resonance studies of sulfur inversion in bis(cyclopentadienyl)-molybdenum and -tungsten complexes with dithioethers. <i>Journal of Organometallic Chemistry</i> , 1994 , 470, 147-152	2.3	15	
65	Investigations on organoantimony compounds. <i>Journal of Organometallic Chemistry</i> , 1973 , 55, 139-141	2.3	15	
64	An N-Acetyl Cysteine Ruthenium Tricarbonyl Conjugate Enables Simultaneous Release of CO and Ablation of Reactive Oxygen Species. <i>Chemistry - A European Journal</i> , 2015 , 21, 14708-12	4.8	14	
63	One-Step Synthesis of Novel Flavylium Salts Containing Alkyl Side Chains in Their 3-, 4?-, 5- or 6-Positions and Their Photophysical Properties in Micellar Media. <i>European Journal of Organic Chemistry</i> , 2004 , 2004, 4877-4883	3.2	14	

62	Encapsulation of Cyano(cyclopentadienyl) Complexes of Iron with \(\mathbb{E}\) cyclodextrin. \(Supramolecular \) Chemistry, \(2002\), 14, 359-366	1.8	14
61	Compared Reductive Chemistry of Molybdenocene and Indenyl-Substituted Complexes. <i>European Journal of Inorganic Chemistry</i> , 2000 , 2000, 331-340	2.3	14
60	Modified molybdenum and tungsten metallocenes and ring-slippage reactions: new compounds and revisited concepts. <i>Applied Organometallic Chemistry</i> , 2000 , 14, 539-548	3.1	14
59	Isomerisation of ⊕inene oxide in the presence of indenyl allyl dicarbonyl molybdenum(II) and tungsten(II) complexes. <i>Catalysis Communications</i> , 2012 , 23, 58-61	3.2	13
58	Synthesis of bis-cyclopentadienyl, bis-indenyl and mixed-ring indenyl halides of tungsten. <i>Journal of Organometallic Chemistry</i> , 1999 , 580, 169-177	2.3	13
57	Haptotropic Shifts and Fluxionality of Cyclopentadienyl in Mixed-Hapticity Complexes: A DFT Mechanistic Study. <i>Organometallics</i> , 2007 , 26, 1777-1781	3.8	12
56	Interactions of Omeprazole and Precursors with beta-Cyclodextrin Host Molecules. <i>Journal of Inclusion Phenomena and Macrocyclic Chemistry</i> , 2003 , 47, 47-52		12
55	Photochemistry of Methyltrioxorhenium Revisited: A DFT/TD-DFT and CASSCF/MS-CASPT2 Theoretical Study. <i>Organometallics</i> , 2006 , 25, 5235-5241	3.8	11
54	Novel carbohydrate-substituted cyclopentadienyls of titanium, molybdenum, manganese and iron. Journal of Organometallic Chemistry, 2003 , 682, 14-19	2.3	11
53	The effect of trimethylsilyl substituents on the ring-slippage of bis-indenyl-molybdenocene derivatives. <i>Journal of Organometallic Chemistry</i> , 2002 , 648, 270-279	2.3	11
52	Studies on the reactivity of the halo-hydride complexes [M($\[Dargap]$ -C5H5)2HX] (M = Mo, W; X = Cl, Br, I). Journal of Organometallic Chemistry, 1989 , 368, 57-65	2.3	10
51	Metabolomics of Treated with the Antimicrobial Carbon Monoxide-Releasing Molecule CORM-3 Reveals Tricarboxylic Acid Cycle as Major Target. <i>Antimicrobial Agents and Chemotherapy</i> , 2019 , 63,	5.9	9
50	Application of an indenyl molybdenum dicarbonyl complex in the isomerisation of pinene oxide to campholenic aldehyde. <i>New Journal of Chemistry</i> , 2014 , 38, 3172	3.6	9
49	Water as efficient medium for mild decarbonylation of tertiary aldehydes. <i>Tetrahedron Letters</i> , 2011 , 52, 2803-2807	2	9
48	Synthesis and characterization of binuclear transition metal@henium(VII) complexes with bridging cyanide ligands. <i>Journal of Organometallic Chemistry</i> , 1998 , 560, 117-124	2.3	9
47	Ring Slippage vs Charge Transfer in the Reductive Chemistry of [IndMo(CO)2(団iimine)]+ Cations. <i>Organometallics</i> , 2006 , 25, 5223-5234	3.8	9
46	Encapsulation of sodium nimesulide and precursors in beta-cyclodextrin. <i>Organic and Biomolecular Chemistry</i> , 2003 , 1, 873-8	3.9	9
45	Organotin-oxomolybdate coordination polymers as catalysts for the epoxidation of cyclooctene. Journal of Molecular Catalysis A, 2005 , 238, 51-55		9

(2010-2001)

44	MetalThetal interaction in polynuclear complexes with cyanide bridges: synthesis, characterisation, and theoretical studies. <i>Journal of Organometallic Chemistry</i> , 2001 , 632, 94-106	2.3	9
43	Methylisocyanide derivatives of molybdenocene and tungstenocene: preparation, reactivity and electronic structure: crystal structures of [(Љ-C5H5)2WBr(CNMe)]Br and [(Љ-C5H5)2{N(H)CH3}][BF4]2□CH3CN. Journal of Organometallic Chemistry, 1992, 440, 119-144	2.3	9
42	[MoR(IB-C3H5)3], R = Alkyl: Alkylmolybdenum Complexes with Agostic C?H? Mo Bond. <i>Angewandte Chemie International Edition in English</i> , 1986 , 25, 555-556		9
41	B-allyl complexes of molybdenum: reactions of [MoCl(B-C3H5)3]2 and the crystal structure of [MoOAc(B-C3H5)3]. <i>Polyhedron</i> , 1986 , 5, 461-471	2.7	9
40	Improving the Anti-inflammatory Response via Gold Nanoparticle Vectorization of CO-Releasing Molecules. <i>ACS Biomaterials Science and Engineering</i> , 2020 , 6, 1090-1101	5.5	9
39	Study of the interactions of bovine serum albumin with a molybdenum(II) carbonyl complex by spectroscopic and molecular simulation methods. <i>PLoS ONE</i> , 2018 , 13, e0204624	3.7	9
38	Synthesis, Characterisation and Antiproliferative Studies of Allyl(dicarbonyl)(cyclopentadienyl)molybdenum Complexes and Cyclodextrin Inclusion Compounds. <i>European Journal of Inorganic Chemistry</i> , 2014 , 2014, 5034-5045	2.3	8
37	Epoxidation of olefins catalyzed by molybdenum loxane compounds. <i>Inorganic Chemistry Communication</i> , 2002 , 5, 1069-1072	3.1	8
36	Bis-indenyl molybdenum(IV) halide complexes: synthesis and X-ray studies. <i>Dalton Transactions RSC</i> , 2002 , 584-590		8
35	Isocyanide derivatives of tungstenocene. <i>Journal of Organometallic Chemistry</i> , 1993 , 455, 129-135	2.3	8
34	Structural preferences of A-dienecyclopentadienyl complexes: molecular mechanics, molecular orbital and crystallographic studies. <i>Inorganica Chimica Acta</i> , 1998 , 275-276, 263-273	2.7	7
33	Studies on molybdenocene derivatives: Reactions of [Cp2Mo(IZ-NCMe)] and preparation of alkyl hydride complexes. Crystal structure of [Cp2Mo(PMe3)]. <i>Journal of Organometallic Chemistry</i> , 1993 , 445, 125-131	2.3	7
32	Some new cyano and isonitrile complexes of Mo(IB-C5H5)2. Polyhedron, 1989, 8, 1802-1803	2.7	7
31	Comparing spectroscopic and electrochemical properties of complexes of type CpM(B-C3H5)(CO)2 (CpI=ICp, Ind, Flu): Altomplementary experimental and DFT study. <i>Journal of Organometallic Chemistry</i> , 2015 , 792, 154-166	2.3	6
30	Efficient Isomerization of Pinene Oxide to Campholenic Aldehyde Promoted by a Mixed-Ring Analogue of Molybdenocene. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 13639-13645	8.3	6
29	The effect of specific modifications of the amine ligands on the solubility, stability, CO release to myoglobin and whole blood, cell toxicity and haemolytic index of [Mo(CO)4(NR3)2] complexes. <i>Journal of Organometallic Chemistry</i> , 2014 , 760, 89-100	2.3	6
28	Heterometallic complexes involving iron(II) and rhenium(VII) centers connected by mu-oxido bridges. <i>Dalton Transactions</i> , 2009 , 10199-207	4.3	6
27	Molybdenum complexes containing substituted cyclopenta[l]phenanthrenyl ligand. <i>Journal of Organometallic Chemistry</i> , 2010 , 695, 680-686	2.3	6

26	The role of cyclopentadienyl versus indenyl in Mo(II) spirodiene complexes reactivity: A DFT mechanistic study. <i>Inorganica Chimica Acta</i> , 2010 , 363, 555-561	2.7	6
25	Cyanideßocyanide isomers in polynuclear complexes. Reactivity and theoretical studies. <i>Inorganica Chimica Acta</i> , 2003 , 356, 297-307	2.7	6
24	Novel indenyl ligands bearing electron-withdrawing functional groups. <i>New Journal of Chemistry</i> , 2016 , 40, 245-256	3.6	5
23	Use of Organomolybdenum Compounds for Promoted Hydrolysis of Phosphoester Bonds in Aqueous Media. <i>European Journal of Inorganic Chemistry</i> , 2014 , 2014, 3681-3689	2.3	5
22	Synthesis of Tris(N,N-dimethylthiocarbamoyl)-1,1,1-tris-(methylaminomethyl)ethane and Its Application as Ligand for Pauson K hand Reaction. <i>Synthetic Communications</i> , 2008 , 38, 2761-2767	1.7	5
21	Structural and Catalytic Studies of a Trimethyltin Vanadate Coordination Polymer. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2007 , 17, 215-222	3.2	5
20	Mono-indenyl and cyclopentadienyl derivatives of molybdenum(IV) with a 16 valence-electron configuration. <i>Journal of Organometallic Chemistry</i> , 2002 , 663, 78-82	2.3	5
19	Exocyclic coordination of the B-fluorenyl, B-cyclopenta[def]phenanthrenyl and B-8,9-dihydrocyclopenta[def]phenanthrenyl anions: X-ray crystal structures, NMR fluxionality and theoretical studies. <i>New Journal of Chemistry</i> , 2002 , 26, 1552-1558	3.6	5
18	Cationic derivatives of niobocene(IV). Crystal structures of [Cp2NbL2][BF4]2 (L = CNMe, NCMe). <i>Polyhedron</i> , 1993 , 12, 765-770	2.7	5
17	Preparation of [Mo2(O2CCH3)4] and [CrMo(O2CCH3)4] from MII derivatives (M = Cr, Mo). <i>Polyhedron</i> , 1990 , 9, 1237-1239	2.7	5
16	Acid-catalyzed epoxide alcoholysis in the presence of indenyl molybdenum carbonyl complexes. Journal of Organometallic Chemistry, 2018 , 855, 12-17	2.3	4
15	One-Pot Intercalation Strategy for the Encapsulation of a CO-Releasing Organometallic Molecule in a Layered Double Hydroxide. <i>European Journal of Inorganic Chemistry</i> , 2020 , 2020, 2726-2736	2.3	3
14	Improved preparation of indenyl molybdenum(II) and tungsten(II) compounds. <i>Inorganica Chimica Acta</i> , 2010 , 363, 1601-1603	2.7	3
13	Synthesis and structural characterization of new mixed-ring indenyl derivatives of molybdenum containing phosphorus ligands. <i>Journal of Organometallic Chemistry</i> , 2007 , 692, 1593-1600	2.3	3
12	Characterization of a chiral menthyldimethyltin molybdate and its use as an olefin epoxidation catalyst. <i>Catalysis Letters</i> , 2007 , 114, 103-109	2.8	3
11	Synthesis and structure of diphenylphosphine derivatives of molybdenocene. <i>Polyhedron</i> , 2004 , 23, 12	26 <u>3†</u> 27	03
10	New molybdenocene dihydrocarbyls. <i>Journal of Organometallic Chemistry</i> , 1987 , 327, C59-C62	2.3	3
9	Metal Carbonyl Prodrugs: CO Delivery and Beyond 2014 , 165-202		2

LIST OF PUBLICATIONS

8	Synthesis and reactivity of mixed-ring indenyl complexes of molybdenocene. <i>Journal of Organometallic Chemistry</i> , 2005 , 690, 1718-1725	2	
7	Carbon Monoxide-Neuroglobin Axis Targeting Metabolism Against Inflammation in BV-2 Microglial Cells. <i>Molecular Neurobiology</i> , 2021 , 59, 916	2	
6	Metal Carbonyls for Co-Based Therapies: Challenges and Successes543-561	2	
5	Rhenium: Organometallic Chemistry 2011 ,	1	
4	cis-Di-Ebxido-bis-[(N,N-diethyl-dithio-carbamato-5,S')oxidomolybdenum(V)](Mo-Mo) tetra-hydro-furan monosolvate. <i>Acta Crystallographica Section E: Structure Reports Online</i> , 2011 , 67, m288-9	1	
3	Rhenium: Organometallic Chemistry 2006 ,	1	
2	Carbon Monoxide Modulation of Microglia-Neuron Communication: Anti-Neuroinflammatory and Neurotrophic Role. <i>Molecular Neurobiology</i> , 2021 , 1	1	
1	An Efficient and Inexpensive Apparatus for Hot Filtration. <i>Journal of Chemical Education</i> , 2001 , 78, 65 2.4		