
Mark Stahl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2940528/publications.pdf Version: 2024-02-01

MADE STAHL

#	Article	IF	CITATIONS
1	The Leucine-Rich Repeat Receptor Kinase BIR2 Is a Negative Regulator of BAK1 in Plant Immunity. Current Biology, 2014, 24, 134-143.	3.9	219
2	Detection of the plant parasite <i>Cuscuta reflexa</i> by a tomato cell surface receptor. Science, 2016, 353, 478-481.	12.6	108
3	The Arabidopsis Leucine-Rich Repeat Receptor Kinase BIR3 Negatively Regulates BAK1 Receptor Complex Formation and Stabilizes BAK1. Plant Cell, 2017, 29, 2285-2303.	6.6	94
4	From cells to muropeptide structures in 24â€h: Peptidoglycan mapping by UPLC-MS. Scientific Reports, 2014, 4, 7494.	3.3	92
5	Comparing Arabidopsis receptor kinase and receptor proteinâ€mediated immune signaling reveals BIK1â€dependent differences. New Phytologist, 2019, 221, 2080-2095.	7.3	73
6	Cyanobacterial antimetabolite 7-deoxy-sedoheptulose blocks the shikimate pathway to inhibit the growth of prototrophic organisms. Nature Communications, 2019, 10, 545.	12.8	53
7	Intergenerational environmental effects: functional signals in offspring transcriptomes and metabolomes after parental jasmonic acid treatment in apomictic dandelion. New Phytologist, 2018, 217, 871-882.	7.3	36
8	The serine/threonine kinase Stk and the phosphatase Stp regulate cell wall synthesis in Staphylococcus aureus. Scientific Reports, 2018, 8, 13693.	3.3	33
9	Meta-Analysis of Arabidopsis KANADI1 Direct Target Genes Identifies a Basic Growth-Promoting Module Acting Upstream of Hormonal Signaling Pathways. Plant Physiology, 2015, 169, 1240-1253.	4.8	26
10	The phytochrome interacting proteins ERF55 and ERF58 repress light-induced seed germination in Arabidopsis thaliana. Nature Communications, 2022, 13, 1656.	12.8	17
11	d-Amino Acids Are Exuded by Arabidopsis thaliana Roots to the Rhizosphere. International Journal of Molecular Sciences, 2018, 19, 1109.	4.1	13
12	ABA-Dependent Salt Stress Tolerance Attenuates Botrytis Immunity in Arabidopsis. Frontiers in Plant Science, 2020, 11, 594827.	3.6	11
13	Editorial: Physiological Aspects of Non-proteinogenic Amino Acids in Plants. Frontiers in Plant Science, 2020, 11, 519464.	3.6	11
14	Cell Death Triggered by the YUCCA-like Bs3 Protein Coincides with Accumulation of Salicylic Acid and Pipecolic Acid But Not of Indole-3-Acetic Acid. Plant Physiology, 2019, 180, 1647-1659.	4.8	8
15	AtDAT1 Is a Key Enzyme of D-Amino Acid Stimulated Ethylene Production in Arabidopsis thaliana. Frontiers in Plant Science, 2019, 10, 1609.	3.6	7
16	Staphylococcus aureus Depends on Eap Proteins for Preventing Degradation of Its Phenol-Soluble Modulin Toxins by Neutrophil Serine Proteases. Frontiers in Immunology, 2021, 12, 701093.	4.8	7
17	Overexpression of branched-chain amino acid aminotransferases rescues the growth defects of cells lacking the Barth syndrome-related gene TAZ1. Journal of Molecular Medicine, 2019, 97, 269-279.	3.9	4
18	The Peptidoglycan Pattern of Staphylococcus carnosus TM300—Detailed Analysis and Variations Due to Genetic and Metabolic Influences. Antibiotics, 2016, 5, 33.	3.7	3