Frank Rudzicz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2940494/publications.pdf Version: 2024-02-01

FDANK RUDZICZ

#	Article	IF	CITATIONS
1	Predicting the target specialty of referral notes to estimate per-specialty wait times with machine learning. PLoS ONE, 2022, 17, e0267964.	2.5	0
2	Modified Subspace Constrained Mean Shift Algorithm. Journal of Classification, 2021, 38, 27-43.	2.2	4
3	Regional brain morphology predicts pain relief in trigeminal neuralgia. NeuroImage: Clinical, 2021, 31, 102706.	2.7	9
4	Machine Learning–Based Prediction of Growth in Confirmed COVID-19 Infection Cases in 114 Countries Using Metrics of Nonpharmaceutical Interventions and Cultural Dimensions: Model Development and Validation. Journal of Medical Internet Research, 2021, 23, e26628.	4.3	18
5	Comparing Pre-trained and Feature-Based Models for Prediction of Alzheimer's Disease Based on Speech. Frontiers in Aging Neuroscience, 2021, 13, 635945.	3.4	41
6	BENDR: Using Transformers and a Contrastive Self-Supervised Learning Task to Learn From Massive Amounts of EEG Data. Frontiers in Human Neuroscience, 2021, 15, 653659.	2.0	68
7	Coughwatch: Real-World Cough Detection using Smartwatches. , 2021, , .		14
8	Using machine learning to predict children's reading comprehension from linguistic features extracted from speech and writing Journal of Educational Psychology, 2021, 113, 1088-1106.	2.9	9
9	Population-based incidence of invasive pneumococcal disease in children and adults in Ontario and British Columbia, 2002–2018: A Canadian Immunization Research Network (CIRN) study. Vaccine, 2021, 39, 7545-7553.	3.8	5
10	Exploring interface design to support caregivers' needs and feelings of trust in online content. Journal of Rehabilitation and Assistive Technologies Engineering, 2020, 7, 205566832096848.	0.9	2
11	Evaluation of Speech-Based Digital Biomarkers: Review and Recommendations. Digital Biomarkers, 2020, 4, 99-108.	4.4	66
12	Using word embeddings to improve the privacy of clinical notes. Journal of the American Medical Informatics Association: JAMIA, 2020, 27, 901-907.	4.4	8
13	Evaluation of Deep Learning Models for Identifying Surgical Actions and Measuring Performance. JAMA Network Open, 2020, 3, e201664.	5.9	80
14	A Textual Analysis of US Corporate Social Responsibility Reports. Abacus, 2020, 56, 3-34.	1.9	40
15	Thinker invariance: enabling deep neural networks for BCI across more people. Journal of Neural Engineering, 2020, 17, 056008.	3.5	39
16	A Conversational Robot for Older Adults with Alzheimer's Disease. ACM Transactions on Human-Robot Interaction, 2020, 9, 1-25.	4.1	30
17	Exploring the Privacy-Preserving Properties of Word Embeddings: Algorithmic Validation Study. Journal of Medical Internet Research, 2020, 22, e18055.	4.3	8
18	Four equity considerations for the use of artificial intelligence in public health. Bulletin of the World Health Organization, 2020, 98, 290-292.	3.3	22

FRANK RUDZICZ

#	Article	IF	CITATIONS
19	Automatically determining cause of death from verbal autopsy narratives. BMC Medical Informatics and Decision Making, 2019, 19, 127.	3.0	16
20	WearBreathing. , 2019, 3, 1-22.		31
21	Explainable Artificial Intelligence for Safe Intraoperative Decision Support. JAMA Surgery, 2019, 154, 1064.	4.3	67
22	Talk2Me: Automated linguistic data collection for personal assessment. PLoS ONE, 2019, 14, e0212342.	2.5	18
23	A survey of word embeddings for clinical text. Journal of Biomedical Informatics: X, 2019, 100, 100057.	4.2	122
24	Development of a ternary hybrid fNIRS-EEG brain–computer interface based on imagined speech. Brain-Computer Interfaces, 2019, 6, 128-140.	1.8	34
25	Artificial Intelligence and the Implementation Challenge. Journal of Medical Internet Research, 2019, 21, e13659.	4.3	187
26	AutoScribe: Extracting Clinically Pertinent Information from Patient-Clinician Dialogues. Studies in Health Technology and Informatics, 2019, 264, 1512-1513.	0.3	2
27	Rhetorical structure and Alzheimer's disease. Aphasiology, 2018, 32, 41-60.	2.2	49
28	Speech in Smartwatch based Audio. , 2018, , .		0
29	Modified mean shift algorithm. IET Image Processing, 2018, 12, 2172-2177.	2.5	7
30	Learning multiview embeddings for assessing dementia. , 2018, , .		10
31	Feasibility of Using a Smartwatch to Intensively Monitor Patients With Chronic Obstructive Pulmonary Disease: Prospective Cohort Study. JMIR MHealth and UHealth, 2018, 6, e10046.	3.7	40
32	The Effect of Photoperiod on the Mood of Reddit Users. Cyberpsychology, Behavior, and Social Networking, 2017, 20, 238-245.	3.9	2
33	Identifying and Avoiding Confusion in Dialogue with People with Alzheimer's Disease. Computational Linguistics, 2017, 43, 377-406.	3.3	17
34	[P1–295]: EARLY DETECTION OF COGNITIVE DISORDERS SUCH AS DEMENTIA ON THE BASIS OF SPEECH ANALYSIS: A CROSSâ€LINGUISTIC COMPARISON OF SPEECH FEATURES. Alzheimer's and Dementia, 2017, 13, P364.	0.8	0
35	[TDâ€Pâ€015]: LUDWIG: A CONVERSATIONAL ROBOT FOR PEOPLE WITH ALZHEIMER'S. Alzheimer's and Dement 2017, 13, P164.	tia, 0.8	5
36	Characterisation of voice quality of Parkinson's disease using differential phonological posterior features. Computer Speech and Language, 2017, 46, 196-208.	4.3	46

FRANK RUDZICZ

#	Article	IF	CITATIONS
37	[TDâ€Pâ€016]: STUDYING NEURODEGENERATION WITH AUTOMATED LINGUISTIC ANALYSIS OF SPEECH DATA. Alzheimer's and Dementia, 2017, 13, P164.	0.8	0
38	Random Item Generation Is Affected by Age. Journal of Speech, Language, and Hearing Research, 2016, 59, 1172-1178.	1.6	1
39	P1â€219: Comparing Neuropsychiatric and Language Features in Earlyâ€Onset and Lateâ€Onset Alzheimer's Disease. Alzheimer's and Dementia, 2016, 12, P490.	0.8	1
40	The mean shift algorithm and its relation to kernel regression. Information Sciences, 2016, 348, 198-208.	6.9	13
41	Prosody and Semantics Are Separate but Not Separable Channels in the Perception of Emotional Speech: Test for Rating of Emotions in Speech. Journal of Speech, Language, and Hearing Research, 2016, 59, 72-89.	1.6	41
42	Principal differential analysis for detection of bilabial closure gestures from articulatory data. Computer Speech and Language, 2016, 36, 294-306.	4.3	3
43	Vector-space topic models for detecting Alzheimer's disease. , 2016, , .		23
44	Linguistic Features Identify Alzheimer's Disease in Narrative Speech. Journal of Alzheimer's Disease, 2015, 49, 407-422.	2.6	439
45	Treatment intensity and childhood apraxia of speech. International Journal of Language and Communication Disorders, 2015, 50, 529-546.	1.5	61
46	Speech Interaction with Personal Assistive Robots Supporting Aging at Home for Individuals with Alzheimer's Disease. ACM Transactions on Accessible Computing, 2015, 7, 1-22.	2.4	52
47	Incremental algorithm for finding principal curves. IET Signal Processing, 2015, 9, 521-528.	1.5	3
48	Fast incremental LDA feature extraction. Pattern Recognition, 2015, 48, 1999-2012.	8.1	73
49	Sequential behavior prediction based on hybrid similarity and cross-user activity transfer. Knowledge-Based Systems, 2015, 77, 29-39.	7.1	9
50	2D Psychoacoustic modeling of equivalent masking for automatic speech recognition. Signal Processing, 2015, 115, 9-19.	3.7	4
51	Noisy Source Vector Quantization Using Kernel Regression. IEEE Transactions on Communications, 2014, 62, 3825-3834.	7.8	4
52	Subject independent identification of breath sounds components using multiple classifiers. , 2014, , .		10
53	Automatic detection of expressed emotion in Parkinson's Disease. , 2014, , .		18
54	Adjusting dysarthric speech signals to be more intelligible. Computer Speech and Language, 2013, 27, 1163-1177.	4.3	36

FRANK RUDZICZ

#	Article	IF	CITATIONS
55	Sentence recognition from articulatory movements for silent speech interfaces. , 2012, , .		27
56	The TORGO database of acoustic and articulatory speech from speakers with dysarthria. Language Resources and Evaluation, 2012, 46, 523-541.	2.7	184
57	Vocal Tract Representation in the Recognition of Cerebral Palsied Speech. Journal of Speech, Language, and Hearing Research, 2012, 55, 1190-1207.	1.6	14
58	Using articulatory likelihoods in the recognition of dysarthric speech. Speech Communication, 2012, 54, 430-444.	2.8	29
59	Articulatory Knowledge in the Recognition of Dysarthric Speech. IEEE Transactions on Audio Speech and Language Processing, 2011, 19, 947-960.	3.2	69
60	Applying discretized articulatory knowledge to dysarthric speech. , 2009, , .		5
61	Phonological features in discriminative classification of dysarthric speech. , 2009, , .		16