
Jesus Garduño-MejÃ-a

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2940262/publications.pdf

Version: 2024-02-01

IFSUS CARDUÃ+O-MEIÃA

#	Article	IF	CITATIONS
1	Nonlinear spectral Interferometry for NIR sources. , 2022, , .		1
2	Effect of oils on the transmission properties of a terahertz photonic crystal. Applied Optics, 2022, 61, 135.	1.8	1
3	Sub-wavelength continuous THz imaging system based on interferometric detection. Optics Express, 2021, 29, 19120.	3.4	6
4	Deep photothermal effect induced by stereotactic laser beams in highly scattering media. Optics Letters, 2021, 46, 4248.	3.3	1
5	Merging Mie solutions and the radiative transport equation to measure optical properties of scattering particles in optical phantoms. Applied Optics, 2020, 59, 10591.	1.8	1
6	Impact of frequency-dependent spherical aberration in the focusing of ultrashort pulses. Applied Optics, 2020, 59, 7247.	1.8	3
7	Algorithm to filter the noise in the spectral intensity of ultrashort laser pulses. Applied Optics, 2020, 59, 7233.	1.8	2
8	Wavelet-based method for spectral interferometry filtering. Applied Optics, 2020, 59, 10130.	1.8	0
9	Interference effects in quantum-optical coherence tomography using spectrally engineered photon pairs. Scientific Reports, 2019, 9, 8954.	3.3	26
10	Experimental observation of predictions of the generalized van Cittert–Zernike theorem for quasi-homogeneous planar electromagnetic sources. Journal of Optics (United Kingdom), 2019, 21, 075601.	2.2	5
11	Low-energy/pulse response and high-resolution-CMOS camera for spatiotemporal femtosecond laser pulses characterization @ 1.55 μm. Review of Scientific Instruments, 2019, 90, 045116.	1.3	8
12	Efficiency signal conversion parameter to evaluate astigmatic femtosecond-optical parametric oscillator cavities. Review of Scientific Instruments, 2019, 90, 015104.	1.3	2
13	Interferometric detection for terahertz microscopy. , 2019, , .		2
14	Rapid scanning optical delay line based on a diffraction grating pair for a low-coherence reflectometer. Applied Optics, 2018, 57, 4542.	1.8	1
15	Design and construction of a broadband spectrum femtosecond laser. , 2018, , .		0
16	A high resolution hand-held focused beam profiler. Proceedings of SPIE, 2017, , .	0.8	1
17	Shack-Hartmann wavefront sensor using a Raspberry Pi embedded system. , 2017, , .		0
18	Z-scan confocal method for indirect focus location. AIP Advances, 2017, 7, 105014.	1.3	3

Jesus Garduño-MejÃa

#	Article	IF	CITATIONS
19	Autocorrelation z-scan technique for measuring the spatial and temporal distribution of femtosecond pulses in the focal region of lenses. Optics Express, 2017, 25, 14473.	3.4	11
20	Time-domain measurements reveal spatial aberrations in a sub-surface two-photon microscope. Applied Optics, 2017, 56, 5047.	2.1	4
21	Comparison of spatially and temporally resolved diffuse transillumination measurement systems for extraction of optical properties of scattering media. Applied Optics, 2017, 56, 9199.	1.8	3
22	Comparison of methods for the calculation of focused ultra-short pulses. Applied Optics, 2017, 56, 1417.	2.1	4
23	Time-Domain Measurements Reveal Spatial Aberrations in a Sub-Surface Two-Photon Microscope. , 2017, , .		0
24	Spatial-temporal distribution of femtosecond pulses at the focal region of a mirror with aberrations. , 2017, , .		0
25	Spatial-Temporal Distribution of Femtosecond Pulses at the Focal Region of a Mirror With Aberrations. , 2017, , .		0
26	Comparison of different Kerr-lens mode locking laser design techniques. Proceedings of SPIE, 2016, , .	0.8	0
27	Aberration analysis based on pinhole-z-scan method near the focal point of refractive systems. Proceedings of SPIE, 2016, , .	0.8	2
28	Mode coupling enhancement by astigmatism compensation in a femtosecond laser cavity. Proceedings of SPIE, 2016, , .	0.8	1
29	Time of flight dependent linearity in diffuse imaging: how effective is it to evaluate the spatial resolution by measuring the edge response function?. Applied Optics, 2016, 55, 1613.	2.1	2
30	Mode-coupling enhancement by pump astigmatism correction in a Ti:Sapphire femtosecond laser. Applied Optics, 2016, 55, 9889.	2.1	4
31	Webcam autofocus mechanism used as a delay line for the characterization of femtosecond pulses. Review of Scientific Instruments, 2015, 86, 085114.	1.3	2
32	Experimental method to characterize the retardance function of optical variable retarders. American Journal of Physics, 2015, 83, 143-149.	0.7	15
33	Focus and Alignment Tolerance in a Photoconductive Terahertz Source. Journal of Infrared, Millimeter, and Terahertz Waves, 2015, 36, 830-837.	2.2	1
34	Temporal widening of a short polarized pulse focused with a high numerical aperture aplanatic lens. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2014, 31, 696.	1.5	4
35	Direct inversion methods for spectral amplitude modulation of femtosecond pulses. Review of Scientific Instruments, 2014, 85, 043105.	1.3	3
36	Spatial chirp in the focusing of few-optical-cycle pulses by a mirror. Journal of Modern Optics, 2013, 60, 1037-1044.	1.3	6

Jesus Garduño-MejÃa

#	Article	IF	CITATIONS
37	Spatial resolution in time domain imaging for different phantom widths using the cumulant expansion solution to the transport equation. Proceedings of SPIE, 2013, , .	0.8	2
38	Temporal spreading generated by diffraction in the focusing of ultrashort light pulses with perfectly conducting spherical mirrors. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2013, 30, 1620.	1.5	8
39	Gauss-Legendre quadrature method used to evaluate the spatio-temporal intensity of ultrashort pulses in the focal region of lenses. Applied Optics, 2012, 51, 306.	1.8	14
40	Third-order dispersion effects generated by non-ideal achromatic doublets on sub-20 femtosecond pulses. Journal of Modern Optics, 2011, 58, 825-834.	1.3	7
41	Effects of primary spherical aberration, coma, astigmatism and field curvature on the focusing of ultrashort pulses: homogenous illumination. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2011, 28, 1979.	1.5	12
42	Effects of primary spherical aberration, coma, astigmatism, and field curvature on the focusing of ultrashort pulses: Gaussian illumination and experiment. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2011, 28, 1990.	1.5	17
43	Fabrication of a deformable mirror for pulse shaping. , 2011, , .		0
44	Gauss-Legendre quadrature method used to evaluate the electric field envelope of ultrashort pulses in the focal region of lenses. , 2011, , .		0
45	Spectral-phase-influence-matrix to shape femtosecond pulses. Proceedings of SPIE, 2011, , .	0.8	0
46	Effects of primary spherical aberration, coma, astigmatism, and field curvature on the focusing of ultrashort pulses. , 2011, , .		0
47	Third order effects generated by refractive lenses on sub 20 femtosecond optical pulses. Journal of Physics: Conference Series, 2011, 274, 012126.	0.4	0
48	Third order dispersion effects generated by achromatic doublets on sub-20 femtosecond optical pulses. Proceedings of SPIE, 2010, , .	0.8	0
49	Analytical method for calculating the electric field envelope of ultrashort pulses by approximating the wavenumber up to third order. Applied Optics, 2010, 49, 2463.	2.1	4
50	Third-order dispersion in a pair of prisms. Journal of Modern Optics, 2009, 56, 1659-1669.	1.3	2
51	Aberration effects on femtosecond pulses generated by nonideal achromatic doublets. Applied Optics, 2009, 48, 4723.	2.1	14
52	Morphology dependent ultrafast electron dynamics in ultrathin gold films. Surface Science, 2008, 602, 3125-3130.	1.9	7
53	Compression of ultrashort pulses by using refractive elements. , 2008, , .		1

54 Ultrafast Dynamics in Ultrathin Gold Films. , 2007, , .

#	Article	IF	CITATIONS
55	Modelling the influence of nonthermal electron dynamics in thin and ultrathin gold films. Chemical Physics, 2007, 341, 276-284.	1.9	12
56	Stability analysis of a non-symmetric femtosecond-cavity-dumped solid-state oscillator. Optics Communications, 2006, 259, 840-847.	2.1	4
57	Programmable spectral phase control of femtosecond pulses by use of adaptive optics and real-time pulse measurement. Journal of the Optical Society of America B: Optical Physics, 2004, 21, 833.	2.1	15