
## Xi-Tao Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2939998/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Enhanced thermal conductivity in copper matrix composites reinforced with titanium-coated diamond particles. Scripta Materialia, 2011, 65, 1097-1100.                                                                        | 5.2  | 212       |
| 2  | A comparative study on Johnson–Cook, modified Johnson–Cook and Arrhenius-type constitutive<br>models to predict the high temperature flow stress in 20CrMo alloy steel. Materials & Design, 2013, 52,<br>677-685.            | 5.1  | 199       |
| 3  | High thermal conductivity through interfacial layer optimization in diamond particles dispersed<br>Zr-alloyed Cu matrix composites. Scripta Materialia, 2015, 109, 72-75.                                                    | 5.2  | 136       |
| 4  | Effect of Ti interlayer on interfacial thermal conductance between CuÂand diamond. Acta Materialia,<br>2018, 160, 235-246.                                                                                                   | 7.9  | 111       |
| 5  | Microstructure and thermal conductivity of Cu/diamond composites with Ti-coated diamond particles produced by gas pressure infiltration. Journal of Alloys and Compounds, 2015, 647, 941-946.                                | 5.5  | 95        |
| 6  | Mechanical and thermal properties of carbon nanotube/aluminum composites consolidated by spark plasma sintering. Materials & Design, 2012, 41, 344-348.                                                                      | 5.1  | 91        |
| 7  | Microstructure evolution and impact fracture behaviors of Z3CN20-09M stainless steels after long-term thermal aging. Journal of Nuclear Materials, 2013, 433, 41-49.                                                         | 2.7  | 86        |
| 8  | Effects of ion irradiation on microstructure and properties of zirconium alloys—A review. Nuclear<br>Engineering and Technology, 2015, 47, 323-331.                                                                          | 2.3  | 81        |
| 9  | Optimized thermal properties in diamond particles reinforced copper-titanium matrix composites produced by gas pressure infiltration. Composites Part A: Applied Science and Manufacturing, 2016, 91, 189-194.               | 7.6  | 80        |
| 10 | Enhanced thermal conductivity in Cu/diamond composites by tailoring the thickness of interfacial TiC layer. Composites Part A: Applied Science and Manufacturing, 2018, 113, 76-82.                                          | 7.6  | 80        |
| 11 | Combining Cr pre-coating and Cr alloying to improve the thermal conductivity of diamond particles reinforced Cu matrix composites. Journal of Alloys and Compounds, 2018, 749, 1098-1105.                                    | 5.5  | 78        |
| 12 | High thermal conductivity of Cu-B/diamond composites prepared by gas pressure infiltration. Journal of Alloys and Compounds, 2018, 735, 1648-1653.                                                                           | 5.5  | 75        |
| 13 | G-phase precipitation in duplex stainless steels after long-term thermal aging: A high-resolution transmission electron microscopy study. Journal of Nuclear Materials, 2014, 452, 382-388.                                  | 2.7  | 73        |
| 14 | Annealing induced recovery of long-term thermal aging embrittlement in a duplex stainless steel.<br>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and<br>Processing, 2013, 564, 85-91. | 5.6  | 68        |
| 15 | Thermal conductivity of Cu–Zr/diamond composites produced by high temperature–high pressure<br>method. Composites Part B: Engineering, 2015, 68, 22-26.                                                                      | 12.0 | 67        |
| 16 | Microstructures and mechanical properties of cast austenite stainless steels after long-term thermal aging at low temperature. Materials & Design, 2013, 50, 886-892.                                                        | 5.1  | 66        |
| 17 | Tailoring interface structure and enhancing thermal conductivity of Cu/diamond composites by alloying boron to the Cu matrix. Materials Characterization, 2019, 152, 265-275.                                                | 4.4  | 66        |
| 18 | Effect of copper content on the thermal conductivity and thermal expansion of Al–Cu/diamond composites. Materials & Design, 2012, 39, 87-92.                                                                                 | 5.1  | 65        |

| #  | Article                                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Investigation on the 1000, 1150 and 1400 °C isothermal section of the Tiî—,Alî—,Nb system. Intermetallics,<br>1996, 4, 13-22.                                                                                                                           | 3.9  | 63        |
| 20 | A modified Zerilli–Armstrong constitutive model to predict hot deformation behavior of 20CrMo<br>alloy steel. Materials & Design, 2014, 56, 122-127.                                                                                                    | 5.1  | 57        |
| 21 | A physically-based constitutive model for a nitrogen alloyed ultralow carbon stainless steel.<br>Computational Materials Science, 2015, 98, 64-69.                                                                                                      | 3.0  | 56        |
| 22 | Interfacial structure evolution of Ti-coated diamond particle reinforced Al matrix composite produced by gas pressure infiltration. Composites Part B: Engineering, 2017, 113, 285-290.                                                                 | 12.0 | 56        |
| 23 | Effect of sigma phase precipitation on the mechanical and wear properties of Z3CN20.09M cast duplex stainless steel. Nuclear Engineering and Design, 2013, 259, 1-7.                                                                                    | 1.7  | 50        |
| 24 | Interfacial structure evolution and thermal conductivity of Cu-Zr/diamond composites prepared by gas pressure infiltration. Journal of Alloys and Compounds, 2019, 781, 800-809.                                                                        | 5.5  | 50        |
| 25 | Non-uniform phase separation in ferrite of a duplex stainless steel. Acta Materialia, 2017, 140, 388-397.                                                                                                                                               | 7.9  | 49        |
| 26 | Nucleation and growth mechanisms of interfacial Al 4 C 3 in Al/diamond composites. Journal of Alloys and Compounds, 2016, 657, 81-89.                                                                                                                   | 5.5  | 46        |
| 27 | Effects of Co additions on electromigration behaviors in Sn–3.0ÂAg–0.5ÂCu-based solder joint. Journal of Materials Science, 2011, 46, 4896-4905.                                                                                                        | 3.7  | 44        |
| 28 | Grain morphology and crystal structure of pre-transition oxides formed on Zircaloy-4. Corrosion Science, 2013, 74, 323-331.                                                                                                                             | 6.6  | 44        |
| 29 | The role of alloying elements in the initiation of nanoscale porosity in oxide films formed on zirconium alloys. Corrosion Science, 2013, 77, 391-396.                                                                                                  | 6.6  | 43        |
| 30 | Regulated Interfacial Thermal Conductance between Cu and Diamond by a TiC Interlayer for Thermal Management Applications. ACS Applied Materials & Interfaces, 2019, 11, 26507-26517.                                                                    | 8.0  | 41        |
| 31 | Optimisation of high thermal conductivity Al/diamond composites produced by gas pressure<br>infiltration by controlling infiltration temperature and pressure. Journal of Materials Science, 2015,<br>50, 688-696.                                      | 3.7  | 40        |
| 32 | Microstructure, Mechanical Properties and InÂVitro Degradation Behavior of a Novel Biodegradable<br>Mg–1.5Zn–0.6Zr–0.2Sc Alloy. Journal of Materials Science and Technology, 2015, 31, 744-750.                                                         | 10.7 | 38        |
| 33 | Effect of metalloid silicon addition on densification, microstructure and thermal–physical<br>properties of Al/diamond composites consolidated by spark plasma sintering. Materials & Design, 2014,<br>63, 838-847.                                     | 5.1  | 37        |
| 34 | Effects of ferrite content on the mechanical properties of thermal aged duplex stainless steels.<br>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and<br>Processing, 2015, 625, 186-193.                          | 5.6  | 37        |
| 35 | Mechanical properties of diamond/Al composites with Ti-coated diamond particles produced by gas-assisted pressure infiltration. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 626, 362-368. | 5.6  | 36        |
| 36 | Interfacial characteristic and thermal conductivity of Al/diamond composites produced by gas pressure infiltration in a nitrogen atmosphere. Materials and Design, 2016, 92, 643-648.                                                                   | 7.0  | 36        |

| #  | Article                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Microstructural evolution in 316LN austenitic stainless steel during solidification process under different cooling rates. Journal of Materials Science, 2016, 51, 2529-2539.                                                                     | 3.7 | 36        |
| 38 | Evolution of the microstructure in aged G115 steels with the different concentration of tungsten.<br>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and<br>Processing, 2018, 729, 161-169.                   | 5.6 | 36        |
| 39 | Electromigration in Sn-Bi Modified with Polyhedral Oligomeric Silsesquioxane. Journal of Electronic<br>Materials, 2010, 39, 2513-2521.                                                                                                            | 2.2 | 35        |
| 40 | Retarding the electromigration effects to the eutectic SnBi solder joints by micro-sized Ni-particles reinforcement approach. Journal of Alloys and Compounds, 2011, 509, 878-884.                                                                | 5.5 | 34        |
| 41 | Modified arrhenius-type constitutive model and artificial neural network-based model for<br>constitutive relationship of 316LN stainless steel during hot deformation. Journal of Iron and Steel<br>Research International, 2015, 22, 721-729.    | 2.8 | 34        |
| 42 | Evaluation of hardening behaviors in ion-irradiated Fe–9Cr and Fe–20Cr alloys by nanoindentation technique. Journal of Nuclear Materials, 2016, 478, 50-55.                                                                                       | 2.7 | 34        |
| 43 | Experimental and theoretical characterization of electrical contact in anisotropically conductive adhesive. IEEE Transactions on Advanced Packaging, 2000, 23, 15-21.                                                                             | 1.6 | 33        |
| 44 | The coupling effects of thermal cycling and high current density on Sn58Bi solder joints. Journal of<br>Materials Science, 2013, 48, 2318-2325.                                                                                                   | 3.7 | 33        |
| 45 | Effect of boron addition on interface microstructure and thermal conductivity of Cu/diamond<br>composites produced by high temperature–high pressure method. Physica Status Solidi (A)<br>Applications and Materials Science, 2014, 211, 587-594. | 1.8 | 33        |
| 46 | The role of Ti coating in enhancing tensile strength of Al/diamond composites. Materials Science<br>& Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 565, 33-37.                                           | 5.6 | 32        |
| 47 | The role of Cr interlayer in determining interfacial thermal conductance between Cu and diamond.<br>Applied Surface Science, 2020, 515, 146046.                                                                                                   | 6.1 | 32        |
| 48 | The formation of atomic-level interfacial layer and its effect on thermal conductivity of W-coated diamond particles reinforced Al matrix composites. Composites Part A: Applied Science and Manufacturing, 2018, 107, 164-170.                   | 7.6 | 29        |
| 49 | Positron annihilation study of proton-irradiated reactor pressure vessel steels. Radiation Physics and Chemistry, 2012, 81, 1586-1592.                                                                                                            | 2.8 | 28        |
| 50 | Interfacial products and thermal conductivity of diamond/Al composites reinforced with ZrC-coated diamond particles. Diamond and Related Materials, 2019, 100, 107565.                                                                            | 3.9 | 28        |
| 51 | Effects of electromigration on resistance changes in eutectic SnBi solder joints. Journal of Materials<br>Science, 2011, 46, 3544-3549.                                                                                                           | 3.7 | 27        |
| 52 | Effects of scandium addition on biocompatibility of biodegradable Mg–1.5Zn–0.6Zr alloy. Materials<br>Letters, 2018, 215, 200-202.                                                                                                                 | 2.6 | 27        |
| 53 | Investigation of the microstructure and strength in G115 steel with the different concentration of tungsten during creep test. Materials Characterization, 2019, 149, 95-104.                                                                     | 4.4 | 27        |
| 54 | Effect of Metal Matrix Alloying on Mechanical Strength of Diamond Particle-Reinforced Aluminum<br>Composites. Journal of Materials Engineering and Performance, 2015, 24, 2556-2562.                                                              | 2.5 | 26        |

| #  | Article                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | The failure models of Sn-based solder joints under coupling effects of electromigration and thermal cycling. Journal of Applied Physics, 2013, 113, .                                                     | 2.5  | 25        |
| 56 | Microstructure, mechanical property and inÂvitro biocorrosion behavior of single-phase<br>biodegradable Mg–1.5Zn–0.6Zr alloy. Journal of Magnesium and Alloys, 2014, 2, 181-189.                          | 11.9 | 25        |
| 57 | Influence of albumin on in vitro degradation behavior of biodegradable Mg-1.5Zn-0.6Zr-0.2Sc alloy.<br>Materials Letters, 2018, 217, 227-230.                                                              | 2.6  | 25        |
| 58 | Effect of boron on G115 martensitic heat resistant steel during aging at 650°C. Materials Science &<br>Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 787, 139529. | 5.6  | 25        |
| 59 | Reinforcement size effect on thermal conductivity in Cu-B/diamond composite. Journal of Materials<br>Science and Technology, 2021, 91, 1-4.                                                               | 10.7 | 25        |
| 60 | Effect of diamond surface chemistry and structure on the interfacial microstructure and properties of Al/diamond composites. RSC Advances, 2016, 6, 67252-67259.                                          | 3.6  | 24        |
| 61 | Effect of Zr Content on Mechanical Properties of Diamond/Cu-Zr Composites Produced by Gas<br>Pressure Infiltration. Journal of Materials Engineering and Performance, 2018, 27, 714-720.                  | 2.5  | 21        |
| 62 | Thermo-Physical Properties of Ti-Coated Diamond/Al Composites Prepared by Pressure Infiltration.<br>Materials Science Forum, 2010, 654-656, 2572-2575.                                                    | 0.3  | 20        |
| 63 | Effects of long-term thermal aging on the stress corrosion cracking behavior of cast austenitic stainless steels in simulated PWR primary water. Journal of Nuclear Materials, 2016, 469, 262-268.        | 2.7  | 20        |
| 64 | Partial phase diagram of the Ti-Al binary system. Journal of Phase Equilibria and Diffusion, 1996, 17,<br>117-120.                                                                                        | 0.3  | 19        |
| 65 | Strengthening of σ phase in a Fe20Cr9Ni cast austenite stainless steel. Materials Characterization, 2013, 84, 120-125.                                                                                    | 4.4  | 19        |
| 66 | The 1400°C isothermal section of the Ti-Al-Nb ternary system. Journal of Phase Equilibria and Diffusion, 1998, 19, 200-205.                                                                               | 0.3  | 18        |
| 67 | Electrical characterization of isotropic conductive adhesive under mechanical loading. Journal of<br>Electronic Materials, 2002, 31, 916-920.                                                             | 2.2  | 18        |
| 68 | Investigation of hardening behavior in Xe ion-irradiated Zr–1Nb. Journal of Nuclear Materials, 2016,<br>473, 256-263.                                                                                     | 2.7  | 18        |
| 69 | Effect of Precipitated Phases on the Pitting Corrosion of Z3CN20.09M Cast Duplex Stainless Steel.<br>Materials Transactions, 2013, 54, 839-843.                                                           | 1.2  | 17        |
| 70 | Effect of Xe26+ ion irradiation on the microstructural evolution and mechanical properties of Zr–1Nb at room and high temperature. Journal of Nuclear Materials, 2015, 461, 78-84.                        | 2.7  | 17        |
| 71 | Recrystallization behavior of cold-rolled Zr–1Nb alloy. Journal of Nuclear Materials, 2015, 456,<br>321-328.                                                                                              | 2.7  | 17        |
| 72 | Mo-interlayer-mediated thermal conductance at Cu/diamond interface measured by time-domain thermoreflectance. Composites Part A: Applied Science and Manufacturing, 2020, 135, 105921.                    | 7.6  | 17        |

| #  | Article                                                                                                                                                                                                                                                            | IF            | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------|
| 73 | Unveiling interfacial structure and improving thermal conductivity of Cu/diamond composites reinforced with Zr-coated diamond particles. Vacuum, 2022, 202, 111133.                                                                                                | 3.5           | 17        |
| 74 | Probabilistic fracture mechanics analysis of thermally aged nuclear piping in a pressurized water reactor. Nuclear Engineering and Design, 2013, 265, 611-618.                                                                                                     | 1.7           | 16        |
| 75 | Tunable coefficient of thermal expansion of Cu-B/diamond composites prepared by gas pressure infiltration. Journal of Alloys and Compounds, 2019, 794, 473-481.                                                                                                    | 5.5           | 16        |
| 76 | Formation behavior of long needle-like M23C6 carbides in a nickel-based alloy without γ' phase during<br>long time aging. Journal of Alloys and Compounds, 2020, 821, 153259.                                                                                      | 5.5           | 16        |
| 77 | Quantitative estimate of the characteristics of conductive particles in ACA by using nano-indenter.<br>IEEE Transactions on Components and Packaging Technologies, 1998, 21, 248-251.                                                                              | 0.7           | 15        |
| 78 | Effects of prior solution treatment on thermal aging behavior of duplex stainless steels. Journal of Nuclear Materials, 2013, 441, 337-342.                                                                                                                        | 2.7           | 15        |
| 79 | Tensile behaviour of 316LN stainless steel at elevated temperatures. Materials at High Temperatures, 2014, 31, 198-203.                                                                                                                                            | 1.0           | 15        |
| 80 | Effects of Ni content on the microstructures, mechanical properties and thermal aging embrittlement<br>behaviors of Fe–20Cr–xNi alloys. Materials Science & Engineering A: Structural Materials:<br>Properties, Microstructure and Processing, 2015, 639, 640-646. | 5.6           | 15        |
| 81 | Phase-field simulation of multi-phase interactions in Fe-C peritectic solidification. Computational Materials Science, 2020, 171, 109220.                                                                                                                          | 3.0           | 15        |
| 82 | Carbide dissolution and grain growth behavior of a nickel-based alloy without γ′ phase during solid solution. Journal of Alloys and Compounds, 2020, 825, 154106.                                                                                                  | 5.5           | 15        |
| 83 | Reply to the "comment on â€~investigation on the 1000, 1150 and 1400 °C isothermal section of the Tiî—,Alî<br>system'â€â€"Part I. Ordering of Nb in γ-TiAl and γ1 phase. Intermetallics, 1998, 6, 323-327.                                                         | – <u>.</u> Np | 14        |
| 84 | Proton-irradiation-induced damage in Fe–0.3wt.%Cu alloys characterized by positron annihilation and nanoindentation. Nuclear Instruments & Methods in Physics Research B, 2013, 307, 545-551.                                                                      | 1.4           | 14        |
| 85 | Aluminum carbide hydrolysis induced degradation of thermal conductivity and tensile strength in diamond/aluminum composite. Journal of Composite Materials, 2018, 52, 2709-2717.                                                                                   | 2.4           | 14        |
| 86 | Effects of scandium addition on the in vitro degradation behavior of biodegradable Mg–1.5Zn–0.6Zr<br>alloy. Journal of Materials Science, 2018, 53, 14075-14086.                                                                                                   | 3.7           | 14        |
| 87 | Interface characterization of a Cu–Ti-coated diamond system. Surface and Coatings Technology, 2015, 278, 163-170.                                                                                                                                                  | 4.8           | 13        |
| 88 | A brittle fracture mechanism in thermally aged duplex stainless steels revealed by in situ high-energy<br>X-ray diffraction. Materials Science & Engineering A: Structural Materials: Properties,<br>Microstructure and Processing, 2019, 739, 264-271.            | 5.6           | 13        |
| 89 | Study of Static Recrystallization Behavior of a Nitrogen-Alloyed Ultralow Carbon Austenitic<br>Stainless Steel by Experiment and Simulation. Journal of Materials Engineering and Performance, 2015,<br>24, 4346-4357.                                             | 2.5           | 12        |
| 90 | Hot deformation behavior of a heat-resistant alloy without γ′-phase. Journal of Iron and Steel Research<br>International, 2020, 27, 820-833.                                                                                                                       | 2.8           | 12        |

| #   | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Improved wear resistance of biodegradable Mg–1.5Zn–0.6Zr alloy by Sc addition. Rare Metals, 2021, 40, 2206-2212.                                                                                        | 7.1 | 12        |
| 92  | Calculation of Jackson's factor of Mg2Si in Mg melt using coordination polyhedron. Journal of<br>Alloys and Compounds, 2013, 581, 494-497.                                                              | 5.5 | 11        |
| 93  | Effect of milling duration on hydrogen storage thermodynamics and kinetics of ball-milled<br>Ce–Mg–Ni-based alloy powders. Journal of Iron and Steel Research International, 2018, 25, 746-754.         | 2.8 | 11        |
| 94  | Phase-field model of graphene aerogel formation by ice template method. Applied Physics Letters, 2019, 115, 111901.                                                                                     | 3.3 | 11        |
| 95  | In Situ Observation of the Deformation and Fracture Behaviors of Long-Term Thermally Aged Cast<br>Duplex Stainless Steels. Metals, 2019, 9, 258.                                                        | 2.3 | 11        |
| 96  | The influence of silicon content on the thermal conductivity of Al-Si/diamond composites. , 2009, , .                                                                                                   |     | 10        |
| 97  | Effects of long term thermal aging on high temperature tensile deformation behaviours of duplex stainless steels. Materials at High Temperatures, 2015, 32, 524-529.                                    | 1.0 | 10        |
| 98  | Effects of Ball Milling Processing Conditions and Alloy Components on the Synthesis of Cu-Nb and<br>Cu-Mo Alloys. Materials, 2019, 12, 1224.                                                            | 2.9 | 10        |
| 99  | Creep behaviour of a novel CoNi-base single-crystal superalloy at high temperature and low stress.<br>Materials Letters, 2020, 262, 127042.                                                             | 2.6 | 10        |
| 100 | Improved corrosion resistance of Mg alloy by a green phosphating: insights into pre-activation, temperature, and growth mechanism. Journal of Materials Science, 2021, 56, 828-843.                     | 3.7 | 10        |
| 101 | Effect of thermal aging on the mechanical, intergranular corrosion and corrosion fatigue properties of Z3CN20.09M cast duplex stainless steel. Nuclear Engineering and Technology, 2021, 53, 2591-2599. | 2.3 | 10        |
| 102 | Hot-Rolled TRIP Steels Based on Dynamic Transformation of Undercooled Austenite. Materials Science<br>Forum, 0, 654-656, 250-253.                                                                       | 0.3 | 9         |
| 103 | Effect of thermal aging on the fatigue crack growth behavior of cast duplex stainless steels.<br>International Journal of Minerals, Metallurgy and Materials, 2015, 22, 1163-1170.                      | 4.9 | 9         |
| 104 | Investigation of ion irradiation hardening behaviors of tempered and long-term thermal aged T92 steel. Journal of Nuclear Materials, 2018, 511, 191-199.                                                | 2.7 | 9         |
| 105 | Investigation of Stress Evolution Induced by Electromigration in Sn-Ag-Cu Solder Joints Based on an<br>X-Ray Diffraction Technique. Journal of Electronic Materials, 2012, 41, 425-430.                 | 2.2 | 8         |
| 106 | Enhanced mechanical properties in Al/diamond composites by Si addition. Rare Metals, 2016, 35, 701-704.                                                                                                 | 7.1 | 8         |
| 107 | Multiphase-field approach with parabolic approximation scheme. Computational Materials Science, 2020, 172, 109322.                                                                                      | 3.0 | 8         |
| 108 | Fe-C peritectic solidification of polycrystalline ferrite by phase-field method. Computational<br>Materials Science, 2020, 178, 109626.                                                                 | 3.0 | 8         |

| #   | Article                                                                                                                                                                                                                               | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Microstructural evolution of sandwiched Cr interlayer in Cu/Cr/diamond subjected to heat treatment. Thin Solid Films, 2021, 736, 138911.                                                                                              | 1.8  | 8         |
| 110 | PRECIPITATION BEHAVIOR OF THE INTERMETALLIC PHASES IN Z3CN20.09M STAINLESS STEEL FOR PRIMARY COOLANT PIPES OF NUCLEAR POWER PLANT. Jinshu Xuebao/Acta Metallurgica Sinica, 2013, 49, 415.                                             | 0.3  | 8         |
| 111 | Effect of yttrium addition on microstructure and orientation of hydride precipitation in Zr-1Nb alloy.<br>International Journal of Hydrogen Energy, 2014, 39, 21116-21126.                                                            | 7.1  | 7         |
| 112 | Effect of thermal aging on the leak-before-break analysis of nuclear primary pipes. Nuclear<br>Engineering and Design, 2014, 280, 493-500.                                                                                            | 1.7  | 7         |
| 113 | Influence of Initial Microstructures on Deformation Behavior of 316LN Austenitic Steels at 400-900°C.<br>Journal of Materials Engineering and Performance, 2015, 24, 694-699.                                                         | 2.5  | 7         |
| 114 | Highly ameliorated gaseous and electrochemical hydrogen storage dynamics of nanocrystalline and<br>amorphous LaMg12-type alloys prepared by mechanical milling. Journal of Iron and Steel Research<br>International, 2017, 24, 50-58. | 2.8  | 7         |
| 115 | Nano-Deformation Behavior of a Thermally Aged Duplex Stainless Steel Investigated by<br>Nanoindentation, FIB and TEM. Journal of Materials Engineering and Performance, 2018, 27, 4714-4721.                                          | 2.5  | 7         |
| 116 | Microstructure and creep strength evolution in G115 steel during creep at 650 °C. Materials Research<br>Express, 2020, 7, 016528.                                                                                                     | 1.6  | 7         |
| 117 | Mechanical Properties of Cu-B/Diamond Composites Prepared by Gas Pressure Infiltration. Journal of Materials Engineering and Performance, 2020, 29, 3107-3119.                                                                        | 2.5  | 7         |
| 118 | Effects of thermal aging temperature and Cr content on phase separation kinetics in Fe-Cr alloys<br>simulated by the phase field method. International Journal of Minerals, Metallurgy and Materials,<br>2013, 20, 1067-1075.         | 4.9  | 6         |
| 119 | Flow Behavior Modeling of a Nitrogen-Alloyed Ultralow Carbon Stainless Steel During Hot<br>Deformation: A Comparative Study of Constitutive Models. Journal of Materials Engineering and<br>Performance, 2015, 24, 4106-4118.         | 2.5  | 6         |
| 120 | Characterization of Impact Deformation Behavior of a Thermally Aged Duplex Stainless Steel by EBSD.<br>Acta Metallurgica Sinica (English Letters), 2018, 31, 798-806.                                                                 | 2.9  | 6         |
| 121 | Effect of tempering temperatures on microstructures and properties of 0.28C–0.22Ti wear-resistant steel. Materials Science and Technology, 2018, 34, 86-94.                                                                           | 1.6  | 6         |
| 122 | Microstructure and mechanical property of biodegradable Mg–1.5Zn–0.6Zr alloy with varying contents of scandium. Materials Letters, 2018, 229, 60-63.                                                                                  | 2.6  | 6         |
| 123 | Comparison of the effects of pre-activators on morphology and corrosion resistance of phosphate conversion coating on magnesium alloy. Journal of Magnesium and Alloys, 2021, , .                                                     | 11.9 | 6         |
| 124 | EFFECT OF LONG TERM AGING ON THE MICROSTRUC-TURE AND MECHANICAL PROPERTIES OF CAST<br>AUSTENITIC STAINLESS STEELS. Jinshu Xuebao/Acta Metallurgica Sinica, 2011, 46, 1186-1191.                                                       | 0.3  | 6         |
| 125 | Effect of Graphite Content on the Conductivity, Wear Behavior, and Corrosion Resistance of the Organic Layer on Magnesium Alloy MAO Coatings. Coatings, 2022, 12, 434.                                                                | 2.6  | 6         |
| 126 | Microstructural modelling of dynamic recrystallisation in Nb microalloyed steels. Materials Science and Technology, 2012, 28, 778-782.                                                                                                | 1.6  | 5         |

| #   | Article                                                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Effect of cooling rate on microstructure, hardness, and residual stress of 0.28C–0.22Ti<br>wear-resistant steel. Journal of Iron and Steel Research International, 2019, 26, 866-874.                                                               | 2.8 | 5         |
| 128 | Effects of Tempering Temperature on the Microstructure and Mechanical Properties of T92<br>Heat-Resistant Steel. Metals, 2019, 9, 194.                                                                                                              | 2.3 | 5         |
| 129 | Proton irradiation induced defects in T92 steels: An investigation by TEM and positron annihilation spectroscopy. Nuclear Instruments & Methods in Physics Research B, 2019, 442, 59-66.                                                            | 1.4 | 5         |
| 130 | The Pitting Corrosion Behavior of the Austenitic Stainless Steel 308L-316L Welded Joint. Metals, 2020, 10, 1258.                                                                                                                                    | 2.3 | 5         |
| 131 | On the temperature-dependent diffusion growth of ï⊷Mg5Al2Zn2 ternary intermetallic compound in<br>the Mg–Al–Zn system. Journal of Materials Science, 2021, 56, 3488-3497.                                                                           | 3.7 | 5         |
| 132 | Corrosion behavior of Zr–Nb–Cr cladding alloys. Rare Metals, 2013, 32, 480-485.                                                                                                                                                                     | 7.1 | 4         |
| 133 | A physically based dynamic recrystallization model considering orientation effects for a nitrogen<br>alloyed ultralow carbon stainless steel during hot forging. Journal of Iron and Steel Research<br>International, 2016, 23, 364-371.            | 2.8 | 4         |
| 134 | Microstructure and properties of 1100ÂMPa grade low-carbon hot-rolled steel by laser welding.<br>Journal of Iron and Steel Research International, 2018, 25, 228-234.                                                                               | 2.8 | 4         |
| 135 | Influence of Mo Additions on the Mechanical Properties of Cast Duplex Stainless Steels before and after Thermal Aging. Metals, 2019, 9, 295.                                                                                                        | 2.3 | 4         |
| 136 | MICROSTRUCTURE CONTROL OF HOT ROLLED TRIP STEEL BASED ON DYNAMIC TRANSFORMATION OF<br>UNDERCOOLED AUSTENITE I. Prior Austenite Grain Size. Jinshu Xuebao/Acta Metallurgica Sinica, 2010,<br>2010, 155-160.                                          | 0.3 | 4         |
| 137 | Retarding electromigration on the Sn-Ag-Cu solder joints by micro-sized metal-particle reinforcement. , 2011, , .                                                                                                                                   |     | 3         |
| 138 | Leak-before-break analysis of thermally aged nuclear pipe under different bending moments. Nuclear<br>Engineering and Technology, 2015, 47, 712-718.                                                                                                | 2.3 | 3         |
| 139 | Characterization of Plastic Deformation Behavior of a Thermally Aged Duplex Stainless Steel. Journal of Materials Engineering and Performance, 2017, 26, 2814-2825.                                                                                 | 2.5 | 3         |
| 140 | The microstructural evolution and mechanical property in G115 steels during long-term aging at 650<br>°C. Materials Research Express, 2019, 6, 116527.                                                                                              | 1.6 | 3         |
| 141 | Effects of Thermal Aging on the Low Cycle Fatigue Behaviors of Cast Duplex Stainless Steels. Metals, 2019, 9, 378.                                                                                                                                  | 2.3 | 3         |
| 142 | Heat transfer in high density electronics packaging. Central South University, 2001, 8, 278-282.                                                                                                                                                    | 0.5 | 2         |
| 143 | MICROSTRUCTURE CONTROL OF HOT ROLLED TRIP STEEL BASED ON DYNAMIC TRANSFORMATION OF<br>UNDERCOOLED AUSTENITE II. Cooling Rate After Dynamic Transformation of Undercooled Austenite.<br>Jinshu Xuebao/Acta Metallurgica Sinica, 2010, 2010, 161-166. | 0.3 | 2         |
| 144 | Influence of manufacturing processes on Î <sup>2</sup> -phase precipitates and corrosion properties of Zr-1Nb alloys. Journal of Nuclear Materials, 2022, 567, 153831.                                                                              | 2.7 | 2         |

| #   | Article                                                                                                                                                                                    | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Recent Work on Environmental Embrittlement in Silicides. Materials Research Society Symposia<br>Proceedings, 1996, 460, 575.                                                               | 0.1 | 1         |
| 146 | Implementation of the Internet course on conductive adhesives for electronics packaging. , 0, , .                                                                                          |     | 1         |
| 147 | Properties of two new medium temperature solders. Soldering and Surface Mount Technology, 2009, 21, 4-8.                                                                                   | 1.5 | 1         |
| 148 | Microstructural Evolution of Rheo-Diecast AZ91D Magnesium Alloy with Gadolinium Addition.<br>Materials Science Forum, 2010, 654-656, 667-670.                                              | 0.3 | 1         |
| 149 | Thermal Aging Embrittlement Evaluation of Nuclear Primary Pipe Steel by Ductile to Brittle Transition<br>Test. Advanced Materials Research, 2010, 97-101, 797-800.                         | 0.3 | 1         |
| 150 | A Method to Prepare TEM Specimens by Focused Ion Beam Milling for Cu/diamond Composites.<br>Microscopy and Microanalysis, 2018, 24, 838-839.                                               | 0.4 | 1         |
| 151 | Development of an Internet course on electrically conductive adhesives with experiments. , 0, , .                                                                                          |     | 0         |
| 152 | Thermal Aging of Primary Circuit Piping Materials in PWR Nuclear Power Plant. Materials Research<br>Society Symposia Proceedings, 2009, 1215, 1.                                           | 0.1 | 0         |
| 153 | Hot Tensile Deformation and Fracture Behavior of a Nitrogen Alloyed Ultralow Carbon Austenitic<br>Stainless Steel. Materials Transactions, 2015, 56, 1984-1991.                            | 1.2 | 0         |
| 154 | Interface tailoring and thermal conductivity enhancement in diamond particles reinforced metal matrix composites. , 2020, , 473-493.                                                       |     | 0         |
| 155 | Evaluation of Thermal Aging Embrittlement in Main Coolant Pipe Steel by Small Punch Test. , 2010, , .                                                                                      |     | 0         |
| 156 | THE MICROSTRUCTURE AND TENSILE FRACTURE BEHAVIOR OF LONG TERM THERMAL AGED Z3CN20-09M STAINLESS STEEL. Jinshu Xuebao/Acta Metallurgica Sinica, 2013, 49, 175.                              | 0.3 | 0         |
| 157 | Study on LBB Behavior of Nuclear Primary Pipes After Long-Term Thermal Aging. , 2014, , 501-508.                                                                                           |     | 0         |
| 158 | Experimental Investigation and Thermodynamic Verification for the Phase Relation around the ε-Mg23<br>(Al, Zn)30 Intermetallic Compound in the Mg-Zn-Al System. Materials, 2021, 14, 6892. | 2.9 | 0         |