List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2939821/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Patterns and prognosis of regional recurrence in nasopharyngeal carcinoma after intensityâ€modulated radiotherapy. Cancer Medicine, 2023, 12, 1399-1408.	2.8	2
2	USP44 regulates irradiation-induced DNA double-strand break repair and suppresses tumorigenesis in nasopharyngeal carcinoma. Nature Communications, 2022, 13, 501.	12.8	32
3	Radiotherapy interruption due to holidays adversely affects the survival of patients with nasopharyngeal carcinoma: a joint analysis based on large-scale retrospective data and clinical trials. Radiation Oncology, 2022, 17, 36.	2.7	2
4	Long-Term Evaluation and Normal Tissue Complication Probability (NTCP) Models for Predicting Radiation-Induced Optic Neuropathy after Intensity-Modulated Radiation Therapy (IMRT) for Nasopharyngeal Carcinoma: A Large Retrospective Study in China. Journal of Oncology, 2022, 2022, 1-10.	1.3	1
5	The immune modulation effects of gemcitabine plus cisplatin induction chemotherapy in nasopharyngeal carcinoma. Cancer Medicine, 2022, , .	2.8	3
6	Causal relationship between genetically predicted depression and cancer risk: a two-sample bi-directional mendelian randomization. BMC Cancer, 2022, 22, 353.	2.6	23
7	Protein C receptor maintains cancer stem cell properties via activating lipid synthesis in nasopharyngeal carcinoma. Signal Transduction and Targeted Therapy, 2022, 7, 46.	17.1	9
8	Development of a prediction model for radiotherapy response among patients with head and neck squamous cell carcinoma based on the tumor immune microenvironment and hypoxia signature. Cancer Medicine, 2022, 11, 4673-4687.	2.8	7
9	A lncRNA signature associated with tumor immune heterogeneity predicts distant metastasis in locoregionally advanced nasopharyngeal carcinoma. Nature Communications, 2022, 13, .	12.8	31
10	A Gene-Expression Predictor for Efficacy of Induction Chemotherapy in Locoregionally Advanced Nasopharyngeal Carcinoma. Journal of the National Cancer Institute, 2021, 113, 471-480.	6.3	17
11	Unraveling tumour microenvironment heterogeneity in nasopharyngeal carcinoma identifies biologically distinct immune subtypes predicting prognosis and immunotherapy responses. Molecular Cancer, 2021, 20, 14.	19.2	48
12	Evolving landscape and academic attitudes toward the controversies of global immunoâ€oncology trials. International Journal of Cancer, 2021, 149, 108-118.	5.1	5
13	Chemotherapeutic and targeted agents can modulate the tumor microenvironment and increase the efficacy of immune checkpoint blockades. Molecular Cancer, 2021, 20, 27.	19.2	54
14	Gemcitabine synergizes with cisplatin to inhibit nasopharyngeal carcinoma cell proliferation and tumor growth. FASEB Journal, 2021, 35, e21885.	0.5	4
15	The Chinese Society of Clinical Oncology (CSCO) clinical guidelines for the diagnosis and treatment of nasopharyngeal carcinoma. Cancer Communications, 2021, 41, 1195-1227.	9.2	128
16	<i>ZNF582</i> hypermethylation promotes metastasis of nasopharyngeal carcinoma by regulating the transcription of adhesion molecules <i>Nectinâ€3</i> and <i>NRXN3</i> . Cancer Communications, 2020, 40, 721-737.	9.2	18
17	Single-cell transcriptomics reveals regulators underlying immune cell diversity and immune subtypes associated with prognosis in nasopharyngeal carcinoma. Cell Research, 2020, 30, 1024-1042.	12.0	182
18	AR-induced long non-coding RNA LINC01503 facilitates proliferation and metastasis via the SFPQ-FOSL1 axis in nasopharyngeal carcinoma. Oncogene, 2020, 39, 5616-5632.	5.9	24

#	Article	IF	CITATIONS
19	Prognostic value of immune score in nasopharyngeal carcinoma using digital pathology. , 2020, 8, e000334.		21
20	A Field Test of Major Value Frameworks in Chemotherapy of Nasopharyngeal Carcinoma—To Know, Then to Measure. Frontiers in Oncology, 2020, 10, 1076.	2.8	1
21	Prognostic value of MRIâ€determined cervical lymph node size in nasopharyngeal carcinoma. Cancer Medicine, 2020, 9, 7100-7106.	2.8	11
22	Prognosis and staging of parotid lymph node metastasis in nasopharyngeal carcinoma: An analysis in 10,126 patients. Oral Oncology, 2019, 95, 150-156.	1.5	14
23	Induction gemcitabine and cisplatin in locoregionally advanced nasopharyngeal carcinoma. Cancer Communications, 2019, 39, 1-4.	9.2	21
24	Thyroid doseâ€volume thresholds for the risk of radiationâ€related hypothyroidism in nasopharyngeal carcinoma treated with intensityâ€modulated radiotherapy—A singleâ€institution study. Cancer Medicine, 2019, 8, 6887-6893.	2.8	19
25	Gemcitabine and Cisplatin Induction Chemotherapy in Nasopharyngeal Carcinoma. New England Journal of Medicine, 2019, 381, 1124-1135.	27.0	573
26	Deep Learning for Automated Contouring of Primary Tumor Volumes by MRI for Nasopharyngeal Carcinoma. Radiology, 2019, 291, 677-686.	7.3	221
27	The development and external validation of simplified T category classification for nasopharyngeal carcinoma to improve the prognostic value in the intensityâ€modulated radiotherapy era. Cancer Medicine, 2019, 8, 2213-2222.	2.8	11
28	Patterns of EBV-positive cervical lymph node involvement in head and neck cancer and implications for the management of nasopharyngeal carcinoma T0 classification. Oral Oncology, 2019, 91, 7-12.	1.5	16
29	Evidence Underlying Recommendations and Payments from Industry to Authors of the National Comprehensive Cancer Network Guidelines. Oncologist, 2019, 24, 498-504.	3.7	7
30	Development and validation of an immune checkpoint-based signature to predict prognosis in nasopharyngeal carcinoma using computational pathology analysis. , 2019, 7, 298.		40
31	Selection and Validation of Induction Chemotherapy Beneficiaries Among Patients With T3N0, T3N1, T4N0 Nasopharyngeal Carcinoma Using Epstein-Barr Virus DNA: A Joint Analysis of Real-World and Clinical Trial Data. Frontiers in Oncology, 2019, 9, 1343.	2.8	24
32	Survival impact of radiotherapy interruption in nasopharyngeal carcinoma in the intensity-modulated radiotherapy era: A big-data intelligence platform-based analysis. Radiotherapy and Oncology, 2019, 132, 178-187.	0.6	24
33	Optimizing the cumulative cisplatin dose during radiotherapy in nasopharyngeal carcinoma: Dose-effect analysis for a large cohort. Oral Oncology, 2019, 89, 102-106.	1.5	16
34	Concurrent chemoradiotherapy with/without induction chemotherapy in locoregionally advanced nasopharyngeal carcinoma: Longâ€ŧerm results of phase 3 randomized controlled trial. International Journal of Cancer, 2019, 145, 295-305.	5.1	168
35	Proposed modifications and incorporation of plasma Epsteinâ€Barr virus DNA improve the TNM staging system for Epsteinâ€Barr virusâ€related nasopharyngeal carcinoma. Cancer, 2019, 125, 79-89.	4.1	143
36	Spontaneous remission of residual postâ€therapy plasma Epstein–Barr virus DNA and its prognostic implication in nasopharyngeal carcinoma: A largeâ€scale, bigâ€data intelligence platformâ€based analysis. International Journal of Cancer, 2019, 144, 2313-2319.	5.1	30

#	Article	IF	CITATIONS
37	Role of sequential chemoradiotherapy in stage II and low-risk stage III–IV nasopharyngeal carcinoma in the era of intensity-modulated radiotherapy: A propensity score-matched analysis. Oral Oncology, 2018, 78, 37-45.	1.5	20
38	Antiâ€epidermal growth factor receptor therapy concurrently with induction chemotherapy in locoregionally advanced nasopharyngeal carcinoma. Cancer Science, 2018, 109, 1609-1616.	3.9	11
39	Optimizing the induction chemotherapy regimen for patients with locoregionally advanced nasopharyngeal Carcinoma: A big-data intelligence platform-based analysis. Oral Oncology, 2018, 79, 40-46.	1.5	28
40	Competing risk nomograms for nasopharyngeal carcinoma in the intensity-modulated radiotherapy era: A big-data, intelligence platform-based analysis. Radiotherapy and Oncology, 2018, 129, 389-395.	0.6	43
41	A novel scoring model to predict benefit of additional induction chemotherapy to concurrent chemoradiotherapy in stage Il–IVa nasopharyngeal carcinoma. Oral Oncology, 2018, 86, 258-265.	1.5	6
42	Relationship between pretreatment concentration of plasma Epsteinâ€Barr virus DNA and tumor burden in nasopharyngeal carcinoma: An updated interpretation. Cancer Medicine, 2018, 7, 5988-5998.	2.8	18
43	Prognostic value of nutritional risk screening 2002 scale in nasopharyngeal carcinoma: A largeâ€scale cohort study. Cancer Science, 2018, 109, 1909-1919.	3.9	22
44	The current status of clinical trials focusing on nasopharyngeal carcinoma: A comprehensive analysis of ClinicalTrials.gov database. PLoS ONE, 2018, 13, e0196730.	2.5	21
45	Adjuvant chemotherapy in patients with locoregionally advanced nasopharyngeal carcinoma: Long-term results of a phase 3 multicentre randomised controlled trial. European Journal of Cancer, 2017, 75, 150-158.	2.8	115
46	Socioeconomic factors and survival in patients with nonâ€metastatic head and neck squamous cell carcinoma. Cancer Science, 2017, 108, 1253-1262.	3.9	33
47	Impact of marital status at diagnosis on survival and its change over time between 1973 and 2012 in patients with nasopharyngeal carcinoma: a propensity scoreâ€matched analysis. Cancer Medicine, 2017, 6, 3040-3051.	2.8	26
48	Delayed clinical complete response to intensity-modulated radiotherapy in nasopharyngeal carcinoma. Oral Oncology, 2017, 75, 120-126.	1.5	12
49	A network meta-analysis in comparing prophylactic treatments of radiotherapy-induced oral mucositis for patients with head and neck cancers receiving radiotherapy. Oral Oncology, 2017, 75, 89-94.	1.5	26
50	Induction Chemotherapy Improved Long-term Outcomes of Patients with Locoregionally Advanced Nasopharyngeal Carcinoma: A Propensity Matched Analysis of 5-year Survival Outcomes in the Era of Intensity-modulated Radiotherapy. Journal of Cancer, 2017, 8, 371-377.	2.5	25
51	Should All Nasopharyngeal Carcinoma with Paranasal Sinus Invasion Be Staged as T3 in the Intensity-Modulated Radiotherapy Era? A Study of 1811 Cases. Journal of Cancer, 2016, 7, 1353-1359.	2.5	12
52	Induction chemotherapy plus concurrent chemoradiotherapy versus concurrent chemoradiotherapy alone in locoregionally advanced nasopharyngeal carcinoma: a phase 3, multicentre, randomised controlled trial. Lancet Oncology, The, 2016, 17, 1509-1520.	10.7	704
53	Prognostic Value of the Cumulative Cisplatin Dose During Concurrent Chemoradiotherapy in Locoregionally Advanced Nasopharyngeal Carcinoma: A Secondary Analysis of a Prospective Phase III Clinical Trial. Oncologist, 2016, 21, 1369-1376.	3.7	50
54	Identification of miR-143 as a tumour suppressor in nasopharyngeal carcinoma based on microRNA expression profiling. International Journal of Biochemistry and Cell Biology, 2015, 61, 120-128.	2.8	30

#	Article	IF	CITATION
55	Pregnancy associated nasopharyngeal carcinoma: A retrospective case-control analysis of maternal survival outcomes. Radiotherapy and Oncology, 2015, 116, 125-130.	0.6	8
56	Comparison of the treatment outcomes of intensity-modulated radiotherapy and two-dimensional conventional radiotherapy in nasopharyngeal carcinoma patients with parapharyngeal space extension. Radiotherapy and Oncology, 2015, 116, 167-173.	0.6	14
57	A Bayesian network meta-analysis comparing concurrent chemoradiotherapy followed by adjuvant chemotherapy, concurrent chemoradiotherapy alone and radiotherapy alone in patients with locoregionally advanced nasopharyngeal carcinoma. Annals of Oncology, 2015, 26, 205-211.	1.2	96
58	Is replacement of the supraclavicular fossa with the lower level classification based on magnetic resonance imaging beneficial in nasopharyngeal carcinoma?. Radiotherapy and Oncology, 2014, 113, 108-114.	0.6	26
59	Concurrent chemoradiotherapy plus adjuvant chemotherapy versus concurrent chemoradiotherapy alone in patients with locoregionally advanced nasopharyngeal carcinoma: a phase 3 multicentre randomised controlled trial. Lancet Oncology, The, 2012, 13, 163-171.	10.7	468
60	Prognostic value of a microRNA signature in nasopharyngeal carcinoma: a microRNA expression analysis. Lancet Oncology, The, 2012, 13, 633-641.	10.7	274
61	Disparities in positive results and dissemination of randomized controlled trials in immuno-oncology. International Reviews of Immunology, 0, , 1-10.	3.3	0