

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2939796/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Adsorption and separation behavior of Pd(II) from simulated high-level liquid waste using <i>N,N,N',N'</i> -tetra-2-ethylhexyl-thiodiglycolamide silica-based adsorbent. Separation Science and Technology, 2022, 57, 48-59.	2.5	7
2	Adsorption Behavior of Sr and Ba Using TDS-Impregnated Microporous Silica-Based Adsorbents in Nitric Acid Solution. Journal of Ion Exchange, 2022, 33, 8-16.	0.3	1
3	Combination of N'-N'-di-n-hexyl-thiodiglycolamide and 2,2'-[(2-ethylhexyl)imino]bis[N,N-bis(2-ethylhexyl) acetamide] for the enhanced adsorption of palladium ions from simulated high-level liquid waste. Journal of Radioanalytical and Nuclear Chemistry, 2022, 331. 1731-1740.	1.5	2
4	Adsorption Behaviors of a 2D Covalent Organic Framework Toward Pd(II) in Hydrochloric Acid Solution. Journal of Ion Exchange, 2022, 33, 32-35.	0.3	0
5	Extraction behaviors of platinum group metals in simulated high-level liquid waste by a hydrophobic ionic liquid bearing an amino moiety. Nuclear Engineering and Technology, 2021, 53, 1218-1223.	2.3	10
6	Adsorption Behaviors of Palladium(II) in Simulated High-Level Liquid Waste Using 2,2'-[(2-ethylhexyl)imino]bis[<i>N</i> , <i>N</i> -bis(2-ethylhexyl)acetamide]-impregnated Adsorbent. Journal of Ion Exchange, 2021, 32, 8-14.	0.3	1
7	Selective Separation of Trivalent Europium(III) from Americium(III) using <i>N,N′</i> Dimethyl- <i>N,N′</i> -di-2-phenylethyl-diglycol Amide (MPEDGA) Extractant in Ionic Liquid. Solvent Extraction Research and Development, 2021, 28, 49-57.	0.4	0
8	Adsorption and separation behavior of palladium(II) from simulated high-level liquid waste using a novel silica-based adsorbents. Radiochimica Acta, 2021, 109, 367-375.	1.2	8
9	Adsorption Performances of an Acid-stable 2D Covalent Organic Framework towards Palladium(II) in Simulated High-level Liquid Waste. Analytical Sciences, 2021, 37, 645-647.	1.6	7
10	Synergistic adsorption behavior of a silica-based adsorbent toward palladium, molybdenum, and zirconium from simulated high-level liquid waste. Journal of Hazardous Materials, 2021, 411, 125136.	12.4	33
11	Adsorption and separation behavior of strontium and yttrium using a silica-based bis(2-ethylhexyl) hydrogen phosphate adsorbent. Journal of Radioanalytical and Nuclear Chemistry, 2021, 329, 1001-1009.	1.5	5
12	Impregnation of covalent organic framework into porous silica support for the recovery of palladium ions from simulated high-level liquid waste. Journal of Radioanalytical and Nuclear Chemistry, 2021, 330, 1065-1074.	1.5	3
13	Complexation Studies of Eu(III) by a Novel Soft N and Hard O Donor Combined Ligand Including <i>N,N,N',N'</i> -Tetrakis(2-pyridylmethyl)-1,3-diaminopropane-2-amide Structure: UV-vis Titration, X-ray Crystallography, EXAFS Spectroscopy Analysis. Solvent Extraction Research and Development, 2021, 28, 69-77	0.4	0
14	Effect of adding dodecanol as modifier to <i>N</i> , <i>N</i> , <i>N<!--</td--><td>1.2</td><td>1</td></i>	1.2	1
15	Adsorption and separation behavior of palladium(II) on a silica-based hybrid donor adsorbent from simulated high-level liquid waste. Journal of Radioanalytical and Nuclear Chemistry, 2020, 326, 1323-1331.	1.5	6
16	Adsorption Behaviors of Palladium Ion from Nitric Acid Solution by a Silica-based Hybrid Donor Adsorbent. Analytical Sciences, 2020, 36, 1541-1545.	1.6	2
17	Selective separation of cadmium(<scp>ii</scp>) from zinc(<scp>ii</scp>) by a novel hydrophobic ionic liquid including an <i>N</i> , <i>N</i> , <i>N</i> , <i>N</i> , dopor combined method. Date: Transactions. 2018. 47, 10063, 10070	3.3	8
18	Extraction Behavior of Lanthanides by a Novel Ionic Liquid Including <i>N</i> N, <i>N</i> , <i>N</i> , Alpha and a strategy. Chemistry Letters, 2018, 47, 10063-10070.	1.3	7

#	Article	IF	CITATIONS
19	Effects of NH ₄ ⁺ , K ⁺ , Mg ²⁺ , and Ca ²⁺ on the Cesium Adsorption/Desorption in Binding Sites of Vermiculitized Biotite. Environmental Science & amp; Technology, 2017, 51, 13886-13894.	10.0	30