

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2939742/publications.pdf Version: 2024-02-01

VII CAO

#	Article	IF	CITATIONS
1	Recent progress in development of new sonosensitizers for sonodynamic cancer therapy. Drug Discovery Today, 2014, 19, 502-509.	3.2	280
2	Nanotechnology-based intelligent drug design for cancer metastasis treatment. Biotechnology Advances, 2014, 32, 761-777.	6.0	151
3	EpCAM aptamer-functionalized mesoporous silica nanoparticles for efficient colon cancer cell-targeted drug delivery. European Journal of Pharmaceutical Sciences, 2016, 83, 28-35.	1.9	146
4	Co-delivery of oxygen and erlotinib by aptamer-modified liposomal complexes to reverse hypoxia-induced drug resistance in lung cancer. Biomaterials, 2017, 145, 56-71.	5.7	129
5	Recent progress in sono-photodynamic cancer therapy: From developed new sensitizers to nanotechnology-based efficacy-enhancing strategies. Acta Pharmaceutica Sinica B, 2021, 11, 2197-2219.	5.7	71
6	Eliminating blood oncogenic exosomes into the small intestine with aptamer-functionalized nanoparticles. Nature Communications, 2019, 10, 5476.	5.8	68
7	Nanoparticle-based drug delivery systems for controllable photodynamic cancer therapy. European Journal of Pharmaceutical Sciences, 2020, 144, 105213.	1.9	67
8	Synthesis of 6- <i>N</i> , <i>N</i> , <i>N</i> .Trimethyltriazole Chitosan via "Click Chemistry―and Evaluation for Gene Delivery. Biomacromolecules, 2009, 10, 2175-2182.	2.6	65
9	Nitric Oxide Inhibits Hetero-adhesion of Cancer Cells to Endothelial Cells: Restraining Circulating Tumor Cells from Initiating Metastatic Cascade. Scientific Reports, 2014, 4, 4344.	1.6	64
10	Dendrimeric anticancer prodrugs for targeted delivery of ursolic acid to folate receptor-expressing cancer cells: Synthesis and biological evaluation. European Journal of Pharmaceutical Sciences, 2015, 70, 55-63.	1.9	64
11	Comparisons between Graphene Oxide and Graphdiyne Oxide in Physicochemistry Biology and Cytotoxicity. ACS Applied Materials & Interfaces, 2018, 10, 32946-32954.	4.0	58
12	Chloroquine in combination with aptamer-modified nanocomplexes for tumor vessel normalization and efficient erlotinib/Survivin shRNA co-delivery to overcome drug resistance in EGFR-mutated non-small cell lung cancer. Acta Biomaterialia, 2018, 76, 257-274.	4.1	58
13	Chitosan-based nanoparticles for improved anticancer efficacy and bioavailability of mifepristone. Beilstein Journal of Nanotechnology, 2016, 7, 1861-1870.	1.5	57
14	Aptamer-Conjugated Chitosan-Anchored Liposomal Complexes for Targeted Delivery of Erlotinib to EGFR-Mutated Lung Cancer Cells. AAPS Journal, 2017, 19, 814-826.	2.2	46
15	Near-infrared/pH dual-responsive nanocomplexes for targeted imaging and chemo/gene/photothermal tri-therapies of non-small cell lung cancer. Acta Biomaterialia, 2020, 107, 242-259.	4.1	45
16	Drug enterohepatic circulation and disposition: constituents of systems pharmacokinetics. Drug Discovery Today, 2014, 19, 326-340.	3.2	44
17	The Architecture and Function of Monoclonal Antibodyâ€Functionalized Mesoporous Silica Nanoparticles Loaded with Mifepristone: Repurposing Abortifacient for Cancer Metastatic Chemoprevention. Small, 2016, 12, 2595-2608.	5.2	41
18	Enhanced Specificity in Capturing and Restraining Circulating Tumor Cells with Dual Antibody–Dendrimer Conjugates. Advanced Functional Materials, 2015, 25, 1304-1313.	7.8	40

Yu Gao

#	Article	IF	CITATIONS
19	Role of generation on folic acid-modified poly(amidoamine) dendrimers for targeted delivery of baicalin to cancer cells. Materials Science and Engineering C, 2017, 75, 182-190.	3.8	39
20	Biomimetic Oxidative Coupling Cyclization Enabling Rapid Construction of Isochromanoindolenines. Organic Letters, 2018, 20, 5457-5460.	2.4	37
21	Oxidative Rearrangement Coupling Reaction for the Functionalization of Tetrahydroâ€Î²â€€arbolines with Aromatic Amines. Angewandte Chemie - International Edition, 2017, 56, 14968-14972.	7.2	36
22	Recent developments of nanotherapeutics for targeted and long-acting, combination HIV chemotherapy. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 138, 75-91.	2.0	36
23	Aspirin, lysine, mifepristone and doxycycline combined can effectively and safely prevent and treat cancer metastasis: prevent seeds from gemmating on soil. Oncotarget, 2015, 6, 35157-35172.	0.8	35
24	Ex vivo and in vivo capture and deactivation of circulating tumor cells by dual-antibody-coated nanomaterials. Journal of Controlled Release, 2015, 209, 159-169.	4.8	33
25	Folate and Heptamethine Cyanine Modified Chitosan-Based Nanotheranostics for Tumor Targeted Near-Infrared Fluorescence Imaging and Photodynamic Therapy. Biomacromolecules, 2017, 18, 2146-2160.	2.6	33
26	Erlotinib-Guided Self-Assembled Trifunctional Click Nanotheranostics for Distinguishing Druggable Mutations and Synergistic Therapy of Nonsmall Cell Lung Cancer. Molecular Pharmaceutics, 2018, 15, 5146-5161.	2.3	32
27	Dual-responsive nanosystem for precise molecular subtyping and resistant reversal of EGFR targeted therapy. Chemical Engineering Journal, 2019, 372, 483-495.	6.6	32
28	Biostable Aptamer Rings Conjugated for Targeting Two Biomarkers on Circulating Tumor Cells in Vivo with Great Precision. Chemistry of Materials, 2017, 29, 10312-10325.	3.2	31
29	A novel nanomissile targeting two biomarkers and accurately bombing CTCs with doxorubicin. Nanoscale, 2017, 9, 5624-5640.	2.8	27
30	Synthesis and potent cytotoxic activity of a novel diosgenin derivative and its phytosomes against lung cancer cells. Beilstein Journal of Nanotechnology, 2019, 10, 1933-1942.	1.5	27
31	Acetic Acid Accelerated Visibleâ€Light Photoredox Catalyzed <i>N</i> â€Demethylation of <i>N,N</i> â€Dimethylaminophenyl Derivatives. Advanced Synthesis and Catalysis, 2017, 359, 687-692.	2.1	26
32	Translation of combination nanodrugs into nanomedicines: lessons learned and future outlook. Journal of Drug Targeting, 2018, 26, 435-447.	2.1	26
33	In vivo inhibition of circulating tumor cells by two apoptosis-promoting circular aptamers with enhanced specificity. Journal of Controlled Release, 2018, 280, 99-112.	4.8	25
34	Chemical Modification of Chitosan for Developing Cancer Nanotheranostics. Biomacromolecules, 2022, 23, 2197-2218.	2.6	24
35	Indocyanine green-encapsulated erlotinib modified chitosan nanoparticles for targeted chemo-photodynamic therapy of lung cancer cells. Dyes and Pigments, 2019, 170, 107588.	2.0	21
36	S-Nitrosocaptopril prevents cancer metastasis in vivo by creating the hostile bloodstream microenvironment against circulating tumor cells. Pharmacological Research, 2019, 139, 535-549.	3.1	20

Yu Gao

#	Article	IF	CITATIONS
37	A nanosensitizer self-assembled from oleanolic acid and chlorin e6 for synergistic chemo/sono-photodynamic cancer therapy. Phytomedicine, 2021, 93, 153788.	2.3	20
38	An intelligent hypoxia-relieving chitosan-based nanoplatform for enhanced targeted chemo-sonodynamic combination therapy on lung cancer. Carbohydrate Polymers, 2021, 274, 118655.	5.1	20
39	Self-assembled chitosan/rose bengal derivative nanoparticles for targeted sonodynamic therapy: preparation and tumor accumulation. RSC Advances, 2015, 5, 17915-17923.	1.7	19
40	Tri-component programmable nanoregulator with Three-pronged penetration boosts immunotherapy of Triple-Negative breast cancer. Chemical Engineering Journal, 2022, 439, 135712.	6.6	17
41	Discovery of novel mifepristone derivatives via suppressing KLF5 expression for the treatment of triple-negative breast cancer. European Journal of Medicinal Chemistry, 2018, 146, 354-367.	2.6	16
42	Catalytic Oxidative Coupling Cyclization for Construction of Benzofuroindolenines under Mild Reaction Conditions. Advanced Synthesis and Catalysis, 2019, 361, 432-435.	2.1	16
43	Hypoxia/pH dual-responsive nitroimidazole-modified chitosan/rose bengal derivative nanoparticles for enhanced photodynamic anticancer therapy. Dyes and Pigments, 2020, 179, 108395.	2.0	16
44	A hematoporphyrin and indocyanine green co-delivery system with NIR triggered-controllable photoactivities for photodynamic therapy. Dyes and Pigments, 2018, 154, 8-20.	2.0	15
45	Co-delivery of gefitinib and hematoporphyrin by aptamer-modified fluorinated dendrimer for hypoxia alleviation and enhanced synergistic chemo-photodynamic therapy of NSCLC. European Journal of Pharmaceutical Sciences, 2021, 167, 106004.	1.9	15
46	Facile preparation of indocyanine green and tiny gold nanoclusters co-loaded nanocapsules for targeted synergistic sono-/photo-therapy. Journal of Colloid and Interface Science, 2022, 627, 596-609.	5.0	15
47	Manipulation of Water for Diversified Functionalization of Tetrahydro-β-carbolines (THβCs) with Indoles. Organic Letters, 2019, 21, 6160-6163.	2.4	13
48	Oxidation of Tetrahydro-β-carbolines by Persulfate. Organic Letters, 2019, 21, 7475-7477.	2.4	11
49	Diverse Functionalization of Tetrahydro-β-carbolines or Tetrahydro-γ-carbolines via Oxidative Coupling Rearrangement. Journal of Organic Chemistry, 2021, 86, 794-812.	1.7	11
50	Construction of Bisindolines via Oxidative Coupling Cyclization. Organic Letters, 2020, 22, 116-119.	2.4	9
51	Molecular targeted nanotheranostics for future individualized cancer treatment. Expert Opinion on Drug Delivery, 2020, 17, 1059-1062.	2.4	9
52	Convenient Tuning of the Elasticity of Self-Assembled Nano-Sized Triterpenoids to Regulate Their Biological Activities. ACS Applied Materials & Interfaces, 2021, 13, 44065-44078.	4.0	8
53	Stabilization of Transient 3-Chloroindolenines Enables Diverse Functionalization. Organic Letters, 2019, 21, 8884-8887.	2.4	6
54	Facile access to evodiakine enabled by aerobic copper-catalyzed oxidative rearrangement. Organic and Biomolecular Chemistry, 2019, 17, 8811-8815.	1.5	3

Yu Gao

#	Article	IF	CITATIONS
55	Construction and biological evaluation of different self-assembled nanoarchitectures of FZU-03,010. European Journal of Pharmaceutical Sciences, 2018, 121, 382-391.	1.9	2
56	Isochromanoindolenines suppress triple-negative breast cancer cell proliferation partially via inhibiting Akt activation. International Journal of Biological Sciences, 2021, 17, 986-994.	2.6	2
57	A Direct Approach to 3â€Azoâ€Substituted 2â€Oxindoles at Room Temperature by Nickelâ€Catalyzed Oxidative Coupling Reaction. Asian Journal of Organic Chemistry, 2019, 8, 475-478.	1.3	1
58	Cuâ€Catalyzed Aerobic Oxidative Coupling of Tetrahydroâ€Î²â€carbolines with Indoles. ChemistrySelect, 2021, 6, 6272-6274.	0.7	1
59	Direct C–H functionalization of tetrahydro-γ-carbolines at the α-position. New Journal of Chemistry, 2022, 46, 9511-9514.	1.4	1