Larisa B Lvova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2939709/publications.pdf Version: 2024-02-01

LADISA R LUOVA

#	Article	IF	CITATIONS
1	Recent Advances in Chemical Sensors for Soil Analysis: A Review. Chemosensors, 2022, 10, 35.	1.8	24
2	Advances in Optical Sensors for Persistent Organic Pollutant Environmental Monitoring. Sensors, 2022, 22, 2649.	2.1	17
3	Phosphorous (V) Corrole Fluorophores for Nitrite Assessment in Environmental and Biological Samples. Chemosensors, 2022, 10, 107.	1.8	5
4	Selective Detection of Mg ²⁺ for Sensing Applications in Drinking Water. Chemistry - A European Journal, 2022, 28, .	1.7	3
5	Chemical traffic light: A self-calibrating naked-eye sensor for fluoride. , 2021, , 983-990.		Ο
6	The Long-Lasting Story of One Sensor Development: From Novel Ionophore Design toward the Sensor Selectivity Modeling and Lifetime Improvement. Sensors, 2021, 21, 1401.	2.1	6
7	The New Approach to a Pattern Recognition of Volatile Compounds: The Inflammation Markers in Nasal Mucus Swabs from Calves Using the Gas Sensor Array. Chemosensors, 2021, 9, 116.	1.8	7
8	Keeping Track of Phaeodactylum tricornutum (Bacillariophyta) Culture Contamination by Potentiometric E-Tongue. Sensors, 2021, 21, 4052.	2.1	1
9	Unexpected Salt/Cocrystal Polymorphism of the Ketoprofen–Lysine System: Discovery of a New Ketoprofen–I-Lysine Salt Polymorph with Different Physicochemical and Pharmacokinetic Properties. Pharmaceuticals, 2021, 14, 555.	1.7	14
10	E-nose for the monitoring of plastics catalytic degradation through the released Volatile Organic Compounds (VOCs) detection. Sensors and Actuators B: Chemical, 2020, 322, 128585.	4.0	17
11	Aspergillus Species Discrimination Using a Gas Sensor Array. Sensors, 2020, 20, 4004.	2.1	14
12	N ₂ S ₂ pyridinophane-based fluorescent chemosensors for selective optical detection of Cd ²⁺ in soils. New Journal of Chemistry, 2020, 44, 20834-20852.	1.4	10
13	Potentiometric E-Tongue System for Geosmin/Isoborneol Presence Monitoring in Drinkable Water. Sensors, 2020, 20, 821.	2.1	18
14	Chemical Sensors for Heavy Metals/Toxin Detection. Chemosensors, 2020, 8, 14.	1.8	7
15	Smartphone coupled with a paper-based optode: Towards a selective cyanide detection. Journal of Porphyrins and Phthalocyanines, 2020, 24, 964-972.	0.4	14
16	Fast Optical Sensing of Metals: A Case Study of Cu ²⁺ Assessment in Soils. ECS Journal of Solid State Science and Technology, 2020, 9, 061004.	0.9	4
17	Response Standardization for Drift Correction and Multivariate Calibration Transfer in "Electronic Tongue―Studies. Methods in Molecular Biology, 2019, 2027, 181-194.	0.4	3
18	A Perspective on Recent Advances in Piezoelectric Chemical Sensors for Environmental Monitoring and Foodstuffs Analysis. Chemosensors, 2019, 7, 39.	1.8	54

LARISA B LVOVA

#	Article	IF	CITATIONS
19	Chemical traffic light: A self-calibrating naked-eye sensor for fluoride. Journal of Porphyrins and Phthalocyanines, 2019, 23, 117-124.	0.4	9
20	Chemical Sensors for Water Potability Assessment. , 2019, , 177-208.		6
21	Optical sensor array based on P(V) corroles for fluorometric detection of nitrite. , 2019, , .		О
22	Joining Chromophores: a Porphyrin-BPI Fused System. European Journal of Organic Chemistry, 2019, 2019, 655-659.	1.2	1
23	Non-enzymatic portable optical sensors for microcystin-LR. Chemical Communications, 2018, 54, 2747-2750.	2.2	15
24	Recent advances in magnesium assessment: From single selective sensors to multisensory approach. Talanta, 2018, 179, 430-441.	2.9	28
25	Editorial: Multisensor Systems for Analysis of Liquids and Gases: Trends and Developments. Frontiers in Chemistry, 2018, 6, 591.	1.8	3
26	Electronic Tongue for Brand Uniformity Control: A Case Study of Apulian Red Wines Recognition and Defects Evaluation â€. Sensors, 2018, 18, 2584.	2.1	20
27	Crown-Porphyrin Ligand for Optical Sensors Development. Proceedings (mdpi), 2018, 2, 922.	0.2	2
28	A Fluorescent Sensor Array Based on Heteroatomic Macrocyclic Fluorophores for the Detection of Polluting Species in Natural Water Samples. Frontiers in Chemistry, 2018, 6, 258.	1.8	23
29	P2AR.8 - The discrimination of cannabis seed oils and flours by an array of porphyrnoids based gas sensors. , 2018, , .		0
30	Chemical sensors for soil analysis: principles and applications. , 2017, , 637-678.		14
31	Electronic tongue based on porphyrins for Apulian red wines defects detection. , 2017, , .		2
32	Systematic approach in Mg2+ ions analysis with a combination of tailored fluorophore design. Analytica Chimica Acta, 2017, 988, 96-103.	2.6	16
33	E-tongue based on Porphyrin Electropolymers for Apulian Red Wines Defects Detection. Proceedings (mdpi), 2017, 1, 489.	0.2	0
34	Photographic Detection of Cadmium(II) and Zinc(II) Ions. Procedia Engineering, 2016, 168, 346-350.	1.2	7
35	Electronic Tongue Principles and Applications in the Food Industry. , 2016, , 151-160.		6
36	Extending electronic tongue calibration lifetime through mathematical drift correction: Case study of microcystin toxicity analysis in waters. Sensors and Actuators B: Chemical, 2016, 237, 962-968.	4.0	29

LARISA B LVOVA

#	Article	IF	CITATIONS
37	Electronic tongue for microcystin screening in waters. Biosensors and Bioelectronics, 2016, 80, 154-160.	5.3	40
38	Wine and Combined Electronic Nose and Tongue. , 2016, , 301-307.		4
39	The light modulation of the interaction of l-cysteine with porphyrins coated ZnO nanorods. Sensors and Actuators B: Chemical, 2015, 209, 613-621.	4.0	14
40	Multi-transduction sensing films for Electronic Tongue applications. Sensors and Actuators B: Chemical, 2015, 207, 1076-1086.	4.0	34
41	E-tongue for Ecological Monitoring Purposes: The Case of Microcystins Detection. Procedia Engineering, 2014, 87, 1358-1361.	1.2	6
42	Porphyrin Electropolymers as Opto-electrochemical Probe for the Detection of Red-ox Analytes. Lecture Notes in Electrical Engineering, 2014, , 49-55.	0.3	1
43	- Photocurable Polymer Membrane Ion Sensors and Their Application for Multicomponent Analysis. , 2014, , 58-85.		0
44	A Ferrocene-Porphyrin Ligand for Multi-Transduction Chemical Sensor Development. Sensors, 2013, 13, 5841-5856.	2.1	32
45	Multimodal Use of New Coumarinâ€Based Fluorescent Chemosensors: Towards Highly Selective Optical Sensors for Hg ²⁺ Probing. Chemistry - A European Journal, 2013, 19, 14639-14653.	1.7	66
46	Porphyrin-based chemical sensors and multisensor arrays operating in the liquid phase. Sensors and Actuators B: Chemical, 2013, 179, 21-31.	4.0	51
47	β-Pyrazino-fused tetrarylporphyrins. Dyes and Pigments, 2013, 99, 136-143.	2.0	25
48	Optical sensors cross-sensitivity amendment: The case study of heavy metals CSPT detection. , 2013, , .		0
49	Salt release monitoring with specific sensors in "in vitro―oral and digestive environments from soft cheeses. Talanta, 2012, 97, 171-180.	2.9	19
50	Fluorimetric Chemosensors Combined with Familiar CSPT Devices for the Selective Detection of Mercury(II) Ions. Procedia Engineering, 2012, 47, 334-337.	1.2	3
51	Carbon nanotubes modified with porphyrin units for gaseous phase chemical sensing. Sensors and Actuators B: Chemical, 2012, 170, 163-171.	4.0	44
52	Towards Hyphenated Sensors Development: Design and Application of Porphyrin Electropolymer Materials. Electroanalysis, 2012, 24, 776-789.	1.5	15
53	P2.1.15 Hybrid sensor array for the analysis of Sudan family colorants. , 2012, , .		0
54	Platinum porphyrins as ionophores in polymeric membrane electrodes. Analyst, The, 2011, 136, 4966.	1.7	12

ADICA	P	
LAKISA	U.	LVUVA

#	Article	IF	CITATIONS
55	Potentiometric Polymeric Film Sensors Based on 5,10,15-tris(4-aminophenyl) Porphyrinates of Co(II) and Cu(II) for Analysis of Biological Liquids. International Journal of Electrochemistry, 2011, 2011, 1-8.	2.4	7
56	An Application of Specific Sensors For The Monitoring of NaCl in Soft Cheeses. , 2011, , .		0
57	Sensing materials with a concurrent sensitivity: design, synthesis and application in multisensory systems. , 2011, , .		ο
58	SWCNTs Modified with Porphyrin Units for Chemical Sensing Applications. Procedia Engineering, 2010, 5, 1043-1046.	1.2	4
59	(Invited) Porphyrin Assemblies for Chemical Sensors Development. ECS Meeting Abstracts, 2010, , .	0.0	Ο
60	Corrole-based ion-selective electrodes. Journal of Porphyrins and Phthalocyanines, 2009, 13, 1168-1178.	0.4	25
61	Porphyrin Electropolymers For Application In Hyphenated Chemical Sensors. , 2009, , .		0
62	The hyphenated CSPT-potentiometric analytical system: An application for vegetable oil quality control. Sensors and Actuators B: Chemical, 2009, 142, 457-463.	4.0	14
63	Clinical analysis of human urine by means of potentiometric Electronic tongue. Talanta, 2009, 77, 1097-1104.	2.9	57
64	Disposable array sensor strip for quantification of sinensetin in Orthosiphon stamineus Benth samples. Mikrochimica Acta, 2008, 163, 113-119.	2.5	3
65	Chemical images by porphyrin arrays of sensors. Mikrochimica Acta, 2008, 163, 103-112.	2.5	33
66	ANALYSIS OF ITALIAN WHITE WINES BY A PORPHYRIN BASED 'ELECTRONIC TONGUE' SYSTEM. , 2008, , .		1
67	Metalloporphyrin - based Electronic Tongue: an Application for the Analysis of Italian White wines. Sensors, 2007, 7, 2750-2762.	2.1	43
68	CHEMICAL IMAGES OF LIQUIDS. , 2007, , 63-95.		1
69	Electronic tongue based on an array of metallic potentiometric sensors. Talanta, 2006, 70, 833-839.	2.9	49
70	Detection of alcohols in beverages: An application of porphyrin-based Electronic tongue. Sensors and Actuators B: Chemical, 2006, 118, 439-447.	4.0	55
71	Evaluation of Italian wine by the electronic tongue: recognition, quantitative analysis and correlation with human sensory perception. Analytica Chimica Acta, 2003, 484, 33-44.	2.6	202
72	Multicomponent analysis of Korean green tea by means of disposable all-solid-state potentiometric electronic tongue microsystem. Sensors and Actuators B: Chemical, 2003, 95, 391-399.	4.0	99

LARISA B LVOVA

#	Article	IF	CITATIONS
73	Determination of Oceanic Carbon Dioxide Using a Carbonate-Selective Electrode. Analytical Chemistry, 2002, 74, 2435-2440.	3.2	74
74	All-solid-state electronic tongue and its application for beverage analysis. Analytica Chimica Acta, 2002, 468, 303-314.	2.6	100
75	APPLICATION OF THE ELECTRONIC TONGUE TO MILK QUALITY MONITORING. , 2000, , .		4
76	Application of a combined artificial olfaction and taste system to the quantification of relevant compounds in red wine. Sensors and Actuators B: Chemical, 2000, 69, 342-347.	4.0	89
77	Electronic nose and electronic tongue integration for improved classification of clinical and food samples. Sensors and Actuators B: Chemical, 2000, 64, 15-21.	4.0	148
78	Chemical sensor array for multicomponent analysis of biological liquids. Analytica Chimica Acta, 1999, 385, 131-135.	2.6	55
79	Photocurable carbonate-selective membranes for chemical sensors containing lipophilic additives. Sensors and Actuators B: Chemical, 1997, 44, 397-401.	4.0	23
80	An 'electronic tongue' system based on an array of metallic potentiometric sensors. , 0, , .		0
81	Hybrid and optical multisensory systems for liquid analysis: theoretical basis, trends and applications. , 0, , .		1