
Jaiwook Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2938601/publications.pdf Version: 2024-02-01

INIMOOK DADK

#	Article	IF	CITATIONS
1	Recyclable Palladium Catalyst for Highly Selective α Alkylation of Ketones with Alcohols. Angewandte Chemie - International Edition, 2005, 44, 6913-6915.	7.2	229
2	Chemoenzymatic Dynamic Kinetic Resolution of Alcohols and Amines. European Journal of Organic Chemistry, 2010, 2010, 999-1015.	1.2	213
3	Aminocyclopentadienyl Ruthenium Chloride: Catalytic Racemization and Dynamic Kinetic Resolution of Alcohols at Ambient Temperature. Angewandte Chemie - International Edition, 2002, 41, 2373-2376.	7.2	193
4	One-Pot Synthesis of Imines and Secondary Amines by Pd-Catalyzed Coupling of Benzyl Alcohols and Primary Amines. Journal of Organic Chemistry, 2009, 74, 2877-2879.	1.7	185
5	Dynamic kinetic resolutions and asymmetric transformations by enzymes coupled with metal catalysis. Current Opinion in Biotechnology, 2002, 13, 578-587.	3.3	184
6	Racemization catalysts for the dynamic kinetic resolution of alcohols and amines. Coordination Chemistry Reviews, 2008, 252, 647-658.	9.5	183
7	Palladium Nanoparticles Entrapped in Aluminum Hydroxide:  Dual Catalyst for Alkene Hydrogenation and Aerobic Alcohol Oxidation. Organic Letters, 2005, 7, 1077-1079.	2.4	175
8	Heterogeneous Copper Catalyst for the Cycloaddition of Azides and Alkynes without Additives under Ambient Conditions. Organic Letters, 2008, 10, 497-500.	2.4	175
9	Dynamic Kinetic Resolution of Primary Amines with a Recyclable Pd Nanocatalyst for Racemization. Organic Letters, 2007, 9, 1157-1159.	2.4	173
10	Aminocyclopentadienyl Ruthenium Complexes as Racemization Catalysts for Dynamic Kinetic Resolution of Secondary Alcohols at Ambient Temperature. Journal of Organic Chemistry, 2004, 69, 1972-1977.	1.7	169
11	(S)-Selective Dynamic Kinetic Resolution of Secondary Alcohols by the Combination of Subtilisin and an Aminocyclopentadienylruthenium Complex as the Catalysts. Journal of the American Chemical Society, 2003, 125, 11494-11495.	6.6	151
12	Dynamic Kinetic Resolution of Amines and Amino Acids by Enzyme–Metal Cocatalysis. ChemCatChem, 2011, 3, 271-277.	1.8	123
13	Dynamic Kinetic Resolution of Allylic Alcohols Mediated by Ruthenium- and Lipase-Based Catalysts. Organic Letters, 2000, 2, 2377-2379.	2.4	117
14	Acceptor-Free Alcohol Dehydrogenation by Recyclable Ruthenium Catalyst. Organic Letters, 2006, 8, 2543-2545.	2.4	115
15	Recyclable gold nanoparticle catalyst for the aerobic alcohol oxidation and C–C bond forming reaction between primary alcohols and ketones under ambient conditions. Tetrahedron, 2009, 65, 1461-1466.	1.0	114
16	One-pot synthesis of recyclable palladium catalysts for hydrogenations and carbon–carbon coupling reactions. Tetrahedron Letters, 2004, 45, 7057-7059.	0.7	112
17	Catalytic Synthesis of Silanols from Hydrosilanes and Applications. ACS Catalysis, 2012, 2, 1539-1549.	5.5	110
18	Air-Stable Racemization Catalyst for Dynamic Kinetic Resolution of Secondary Alcohols at Room Temperature. Organic Letters, 2005, 7, 4523-4526.	2.4	102

#	Article	IF	CITATIONS
19	Enzymatic resolution of secondary alcohols coupled with ruthenium-catalyzed racemization without hydrogen mediator. Tetrahedron Letters, 1999, 40, 6281-6284.	0.7	101
20	Rhodium and Iridium Nanoparticles Entrapped in Aluminum Oxyhydroxide Nanofibers: Catalysts for Hydrogenations of Arenes and Ketones at Room Temperature with Hydrogen Balloon. Advanced Synthesis and Catalysis, 2007, 349, 2039-2047.	2.1	94
21	Heterogeneous Shvo-type ruthenium catalyst: dehydrogenation of alcohols without hydrogen acceptors. Tetrahedron Letters, 2004, 45, 4607-4610.	0.7	92
22	Dynamic kinetic resolution of secondary alcohols by enzyme–metal combinations in ionic liquid. Green Chemistry, 2004, 6, 471-474.	4.6	89
23	Practical Ruthenium/Lipase-Catalyzed Asymmetric Transformations of Ketones and Enol Acetates to Chiral Acetates. Organic Letters, 2000, 2, 2487-2490.	2.4	77
24	Rhodium nanoparticles entrapped in boehmite nanofibers: recyclable catalyst for arene hydrogenation under mild conditions. Chemical Communications, 2005, , 5667.	2.2	77
25	Postsynthetic Functionalization of a Hollow Silica Nanoreactor with Manganese Oxide-Immobilized Metal Nanocrystals Inside the Cavity. Journal of the American Chemical Society, 2013, 135, 15714-15717.	6.6	75
26	Efficient catalytic racemization of secondary alcohols. Tetrahedron Letters, 1998, 39, 5545-5548.	0.7	70
27	Lipase/Ruthenium-Catalyzed Dynamic Kinetic Resolution of Hydroxy Acids, Diols, and Hydroxy Aldehydes Protected with a Bulky Group. Journal of Organic Chemistry, 2001, 66, 4736-4738.	1.7	69
28	Characterization and Utility of Nâ€Unsubstituted Imines Synthesized from Alkyl Azides by Ruthenium Catalysis. Angewandte Chemie - International Edition, 2012, 51, 10851-10855.	7.2	68
29	Magnetically Separable Pd Catalyst for Highly Selective Epoxide Hydrogenolysis under Mild Conditions. Organic Letters, 2007, 9, 3417-3419.	2.4	67
30	C–H Activation Guided by Aromatic N–H Ketimines: Synthesis of Functionalized Isoquinolines Using Benzyl Azides and Alkynes. Journal of Organic Chemistry, 2014, 79, 9094-9103.	1.7	65
31	Highly Enantioselective Dynamic Kinetic Resolution of 1,2â^'Diarylethanols by a Lipaseâ^'Ruthenium Couple. Organic Letters, 2008, 10, 1295-1298.	2.4	64
32	Concerted Catalytic Reactions for Conversion of Ketones or Enol Acetates to Chiral Acetates. Organic Letters, 2000, 2, 409-411.	2.4	62
33	Ionicâ€Surfactantâ€Coated <i>Burkholderia cepacia</i> Lipase as a Highly Active and Enantioselective Catalyst for the Dynamic Kinetic Resolution of Secondary Alcohols. Angewandte Chemie - International Edition, 2011, 50, 10944-10948.	7.2	62
34	Air-Stable Racemization Catalysts for the Dynamic Kinetic Resolution of Secondary Alcohols. Journal of Organic Chemistry, 2007, 72, 6860-6864.	1.7	61
35	Rutheniumâ€Catalyzed, Oneâ€Pot Alcohol Oxidation–Wittig Reaction Producing α,βâ€Unsaturated Esters. European Journal of Organic Chemistry, 2009, 2009, 2943-2946.	1.2	53
36	Transformation of Silanes into Silanols using Water and Recyclable Metal Nanoparticle Catalysts. ChemCatChem, 2012, 4, 521-524.	1.8	53

#	Article	IF	CITATIONS
37	Chemoenzymatic Synthesis of Rivastigmine via Dynamic Kinetic Resolution as a Key Step. Journal of Organic Chemistry, 2010, 75, 3105-3108.	1.7	51
38	Synthesis of Optically Active Amino Acid Derivatives via Dynamic Kinetic Resolution. Journal of Organic Chemistry, 2009, 74, 9543-9545.	1.7	47
39	Kinetic and Dynamic Kinetic Resolution of Secondary Alcohols with Ionic-Surfactant-Coated <i>Burkholderia cepacia</i> Lipase: Substrate Scope and Enantioselectivity. Journal of Organic Chemistry, 2013, 78, 2571-2578.	1.7	46
40	Fast racemization and dynamic kinetic resolution of primary benzyl amines. Tetrahedron Letters, 2010, 51, 5581-5584.	0.7	42
41	Facile Synthesis of (η5-Ph4C4COH)(CO)2RuCl and Catalytic Oxidation of Alcohols with Chloroform. Organometallics, 2002, 21, 5674-5677.	1.1	36
42	Asymmetric Reductive Acylation of Aromatic Ketoximes by Enzyme-Metal Cocatalysis. Journal of Organic Chemistry, 2008, 73, 4302-4304.	1.7	36
43	Highly efficient solvent-free catalytic hydrogenation of solid alkenes and nitro-aromatics using Pd nanoparticles entrapped in aluminum oxy-hydroxide. Tetrahedron Letters, 2010, 51, 4250-4252.	0.7	32
44	Photoactivated Racemization Catalyst for Dynamic Kinetic Resolution of Secondary Alcohols. Journal of Organic Chemistry, 2010, 75, 5740-5742.	1.7	31
45	Dynamic Kinetic Resolution of Diarylmethanols with an Activated Lipoprotein Lipase. ACS Catalysis, 2015, 5, 683-689.	5.5	29
46	Formation of an Iodide-Bridged Diruthenium Complex from [(η5-Ph4C4COH)(CO)2RuI] and [(Ph4C4CO)(CO)2Ru]2: An Efficient Catalyst for Alcohol Oxidation with Ag2O. Organometallics, 2009, 28, 4624-4627.	1.1	28
47	Chemoenzymatic synthesis of the calcimimetics (+)-NPS R-568 via asymmetric reductive acylation of ketoxime intermediate. Tetrahedron Letters, 2010, 51, 3536-3537.	0.7	28
48	Candida antarctica lipase A and Pseudomonas stutzeri lipase as a pair of stereocomplementary enzymes for the resolution of 1,2-diarylethanols and 1,2-diarylethanamines. Tetrahedron Letters, 2013, 54, 1185-1188.	0.7	26
49	Asymmetric Transformations of Acyloxyphenyl Ketones by Enzymeâ Metal Multicatalysis. Journal of Organic Chemistry, 2002, 67, 9481-9483.	1.7	24
50	Synthesis of 2,5â€Diaminoquinones by Oneâ€Pot Copperâ€Catalyzed Aerobic Oxidation of Hydroquinones and Addition Reaction of Amines. Advanced Synthesis and Catalysis, 2009, 351, 2573-2578.	2.1	23
51	Substituent Effect on Catalytic Activities of [{η ⁵ â€Ar ₄ C ₄ COC(O)Ar}Ru(CO) ₂ Cl] in Racemization and DKR of Secondary Alcohols. ChemCatChem, 2011, 3, 354-359.	1.8	23
52	X-ray Structure and Reactivity of (η4-tetraphenylcyclopentadienone)(CO)2Ru(HOCHMe2): Unexpected Stability of the Neutral 2-Propanolâ^'Ruthenium(0) Complex with Respect to β-Hydride Elimination. Organometallics, 2001, 20, 3370-3372.	1,1	22
53	Silylation of primary alcohols with recyclable ruthenium catalyst and hydrosilanes. Tetrahedron Letters, 2010, 51, 4573-4575.	0.7	22
54	Exploiting the Nucleophilicity of NH Imines: Synthesis of Enamides from Alkyl Azides and Acid Anhydrides. Advanced Synthesis and Catalysis, 2014, 356, 2769-2774.	2.1	22

#	Article	IF	CITATIONS
55	Highly Efficient and Chemoselective Rutheniumâ€Catalyzed Hydrosilylation of Aldehydes. Advanced Synthesis and Catalysis, 2011, 353, 3363-3366.	2.1	21
56	Catalytic transformation of esters of 1,2-azido alcohols into α-amido ketones. Chemical Communications, 2016, 52, 6549-6552.	2.2	20
57	Synthesis of Enamides by Rutheniumâ€Catalyzed Reaction of Alkyl Azides with Acid Anhydrides in Ionic Liquid. ChemCatChem, 2015, 7, 4030-4034.	1.8	19
58	A Ru-catalyzed one-pot synthesis of homopropargylic amines from alkyl azides under photolytic conditions. RSC Advances, 2014, 4, 20632-20635.	1.7	17
59	Ruthenium Bisammine Complex and Its Reaction with Aryl Azides. Organometallics, 2017, 36, 3471-3476.	1.1	16
60	Recyclable Copper Catalyst for <i>meta</i> â€Selective CH Bond Arylation. ChemCatChem, 2011, 3, 1127-1129.	1.8	15
61	Novel Catalyst System for Hydrostannation of Alkynes. Chemistry - A European Journal, 2014, 20, 1267-1271.	1.7	15
62	Redox reaction between benzyl azides and aryl azides: concerted synthesis of aryl nitriles and anilines. Organic and Biomolecular Chemistry, 2017, 15, 1636-1641.	1.5	14
63	Chemoselective, Isomerizationâ€Free Synthesis of <i>N</i> â€Acylketimines from N–H Imines. Advanced Synthesis and Catalysis, 2017, 359, 1503-1507.	2.1	9
64	Fast and Complete Transimination of NH Imines into <i>O</i> â€Alkyl Oximes. Asian Journal of Organic Chemistry, 2015, 4, 316-319.	1.3	8
65	Highly enantioselective dynamic kinetic resolution of alkyl aryl carbinols carrying a trimethylsilyl group with a highly active lipoprotein lipase preparation. Tetrahedron: Asymmetry, 2015, 26, 840-845.	1.8	8
66	Base-Free Dynamic Kinetic Resolution of Secondary Alcohols with a Ruthenium–Lipase Couple. Journal of Organic Chemistry, 2019, 84, 16293-16298.	1.7	8
67	Synthesis of Piperidones from Benzyl Azides and Acetone. Bulletin of the Korean Chemical Society, 2014, 35, 3433-3436.	1.0	7
68	Stereoselective Synthesis of Highly Substituted α‧ilylamines from Silylmethyl Azides under Ru Catalysis. European Journal of Organic Chemistry, 2014, 2014, 7577-7581.	1.2	7
69	A Stereoselective Access to Cyclic <i>cis</i> â€1,2â€Amino Alcohols from <i>trans</i> â€1,2â€Azido Alcohol Precursors. Advanced Synthesis and Catalysis, 2015, 357, 1398-1404.	2.1	7
70	Synthesis of 1H-azadienes and application to one-pot organic transformations. RSC Advances, 2016, 6, 661-668.	1.7	7
71	Concurrent Formation of N–H Imines and Carbonyl Compounds by Ruthenium-Catalyzed C–C Bond Cleavage of β-Hydroxy Azides. Organic Letters, 2020, 22, 4608-4613.	2.4	7
72	Zincâ€Mediated <i>syn</i> â€Selective Crotylation of Nâ€Unsubstituted Imines. Asian Journal of Organic Chemistry, 2017, 6, 441-444.	1.3	5

#	Article	IF	CITATIONS
73	Ionic-surfactant-coated subtilisin: activity, enantioselectivity, and application to dynamic kinetic resolution of secondary alcohols. Organic and Biomolecular Chemistry, 2017, 15, 8836-8844.	1.5	5
74	Asymmetric Synthesis of Biaryl Diols via Dynamic Kinetic Resolution. Bulletin of the Korean Chemical Society, 2021, 42, 1028-1032.	1.0	3
75	Synthesis of aminocyclopentadienyl ruthenium chloride. Inorganic Chemistry Communication, 2004, 7, 988-989.	1.8	2
76	Generation of N–H Imines from α-Azidocarboxylic Acids through Ru-Catalyzed Decarboxylation. Journal of Organic Chemistry, 2021, 86, 17409-17417.	1.7	1
77	Heterogeneous Shvo-Type Ruthenium Catalyst: Dehydrogenation of Alcohols Without Hydrogen Acceptors ChemInform, 2004, 35, no.	0.1	0
78	One-Pot Synthesis of Recyclable Palladium Catalysts for Hydrogenations and Carbon?Carbon Coupling Reactions ChemInform, 2005, 36, no.	0.1	0
79	Catalysis by enzyme-metal combinations. , 2007, , 59-80.		0