Dominik Schneider

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2938201/publications.pdf

Version: 2024-02-01

68 papers 1,885 citations

394421 19 h-index 39 g-index

79 all docs

79 docs citations

79 times ranked

2708 citing authors

#	Article	IF	CITATIONS
1	Land-use choices follow profitability at the expense of ecological functions in Indonesian smallholder landscapes. Nature Communications, 2016, 7, 13137.	12.8	186
2	Phylogenetic Analysis of a Microbialite-Forming Microbial Mat from a Hypersaline Lake of the Kiritimati Atoll, Central Pacific. PLoS ONE, 2013, 8, e66662.	2.5	160
3	Trade-offs between multifunctionality and profit in tropical smallholder landscapes. Nature Communications, 2020, 11, 1186.	12.8	156
4	Direct and cascading impacts of tropical land-use change on multi-trophic biodiversity. Nature Ecology and Evolution, 2017, 1, 1511-1519.	7.8	137
5	Impact of Lowland Rainforest Transformation on Diversity and Composition of Soil Prokaryotic Communities in Sumatra (Indonesia). Frontiers in Microbiology, 2015, 6, 1339.	3.5	92
6	Intensive tropical land use massively shifts soil fungal communities. Scientific Reports, 2019, 9, 3403.	3.3	86
7	Tree Species Shape Soil Bacterial Community Structure and Function in Temperate Deciduous Forests. Frontiers in Microbiology, 2019, 10, 1519.	3.5	71
8	Drylands soil bacterial community is affected by land use change and different irrigation practices in the Mezquital Valley, Mexico. Scientific Reports, 2018, 8, 1413.	3.3	58
9	Changes in Trophic Groups of Protists With Conversion of Rainforest Into Rubber and Oil Palm Plantations. Frontiers in Microbiology, 2019, 10, 240.	3.5	48
10	How Rainforest Conversion to Agricultural Systems in Sumatra (Indonesia) Affects Active Soil Bacterial Communities. Frontiers in Microbiology, 2018, 9, 2381.	3. 5	44
11	Unravelling the effects of tropical land use conversion on the soil microbiome. Environmental Microbiomes, 2020, 15, 5.	5.0	37
12	Microbial functional changes mark irreversible course of Tibetan grassland degradation. Nature Communications, 2022, 13, 2681.	12.8	37
13	Nitrile-Degrading Bacteria Isolated from Compost. Frontiers in Environmental Science, 2017, 5, .	3.3	33
14	Globally Abundant " <i>Candidatus</i> Udaeobacter―Benefits from Release of Antibiotics in Soil and Potentially Performs Trace Gas Scavenging. MSphere, 2020, 5, .	2.9	32
15	Active metabolic pathways of anaerobic methane oxidation in paddy soils. Soil Biology and Biochemistry, 2021, 156, 108215.	8.8	32
16	Calcium dynamics in microbialiteâ€forming exopolymerâ€rich mats on the atoll of <scp>K</scp> iritimati, <scp>R</scp> epublic of <scp>K</scp> iribati, <scp>C</scp> entral <scp>P</scp> acific. Geobiology, 2015, 13, 170-180.	2.4	30
17	Nitrogen Metabolism Genes from Temperate Marine Sediments. Marine Biotechnology, 2017, 19, 175-190.	2.4	30

The influence of microbial mats on travertine precipitation in active hydrothermal systems (Central) Tj ETQq0 0 0 rgBT /Overlgck 10 Tf 5

#	Article	IF	Citations
19	Potentially Active Iron, Sulfur, and Sulfate Reducing Bacteria in Skagerrak and Bothnian Bay Sediments. Geomicrobiology Journal, 2017, 34, 840-850.	2.0	28
20	Bacterial succession along a sediment porewater gradient at Lake Neusiedl in Austria. Scientific Data, 2019, 6, 163.	5.3	23
21	Production of the Fragrance Geraniol in Peroxisomes of a Product-Tolerant Baker's Yeast. Frontiers in Bioengineering and Biotechnology, 2020, 8, 582052.	4.1	22
22	Shifts in root and soil chemistry drive the assembly of belowground fungal communities in tropical land-use systems. Soil Biology and Biochemistry, 2021, 154, 108140.	8.8	22
23	A novel, versatile family IV carboxylesterase exhibits high stability and activity in a broad pH spectrum. Biotechnology Letters, 2017, 39, 577-587.	2.2	21
24	Soil and root nutrient chemistry structure rootâ€associated fungal assemblages in temperate forests. Environmental Microbiology, 2020, 22, 3081-3095.	3.8	21
25	Authigenic formation of Ca–Mg carbonates in the shallow alkaline Lake Neusiedl, Austria. Biogeosciences, 2020, 17, 2085-2106.	3.3	21
26	Maize root and shoot litter quality controls short-term CO ₂ and N ₂ O emissions and bacterial community structure of arable soil. Biogeosciences, 2020, 17, 1181-1198.	3.3	20
27	Living in a Puddle of Mud: Isolation and Characterization of Two Novel Caulobacteraceae Strains Brevundimonas pondensis sp. nov. and Brevundimonas goettingensis sp. nov Applied Microbiology, 2021, 1, 38-59.	1.6	20
28	Metagenomic and Metatranscriptomic Analyses of Bacterial Communities Derived From a Calcifying Karst Water Creek Biofilm and Tufa. Geomicrobiology Journal, 2015, 32, 316-331.	2.0	19
29	Drivers of gut microbiome variation within and between groups of a wild Malagasy primate. Microbiome, 2022, 10, 28.	11.1	19
30	Impact of Nitriles on Bacterial Communities. Frontiers in Environmental Science, 2019, 7, .	3.3	18
31	One size fits all? Relationships among group size, health, and ecology indicate a lack of an optimal group size in a wild lemur population. Behavioral Ecology and Sociobiology, 2019, 73, 1.	1.4	18
32	Impact of nitrogen and phosphorus addition on resident soil and root mycobiomes in beech forests. Biology and Fertility of Soils, 2021, 57, 1031-1052.	4.3	18
33	Comparative Genomic Analysis of Members of the Genera <i>>Methanosphaera</i> >and <i>>Methanobrevibacter</i> Potential Metabolic Functions. Archaea, 2018, 2018, 1-9.	2.3	17
34	Morphological and Metabolite Responses of Potatoes under Various Phosphorus Levels and Their Amelioration by Plant Growth-Promoting Rhizobacteria. International Journal of Molecular Sciences, 2021, 22, 5162.	4.1	17
35	Dietary shifts and social interactions drive temporal fluctuations of the gut microbiome from wild redfronted lemurs. ISME Communications, 2022, 2, .	4.2	16
36	Gut bacterial communities of diarrheic patients with indications of Clostridioides difficile infection. Scientific Data, 2017, 4, 170152.	5. 3	15

#	Article	IF	Citations
37	Land Use Change and Water Quality Use for Irrigation Alters Drylands Soil Fungal Community in the Mezquital Valley, Mexico. Frontiers in Microbiology, 2019, 10, 1220.	3.5	15
38	First Complete Genome Sequences of Janthinobacterium lividum EIF1 and EIF2 and Their Comparative Genome Analysis. Genome Biology and Evolution, 2020, 12, 1782-1788.	2.5	15
39	Tree species composition and soil properties in pure and mixed beech-conifer stands drive soil fungal communities. Forest Ecology and Management, 2021, 502, 119709.	3.2	15
40	Bacteriohopanepolyols in a stratified cyanobacterial mat from Kiritimati (Christmas Island, Kiribati). Organic Geochemistry, 2013, 55, 55-62.	1.8	14
41	Extraction of Total DNA and RNA from Marine Filter Samples and Generation of a cDNA as Universal Template for Marker Gene Studies. Methods in Molecular Biology, 2017, 1539, 13-22.	0.9	13
42	The ubiquitous soil verrucomicrobial clade â€~ <i>Candidatus</i> Udaeobacter' shows preferences for acidic <scp>pH</scp> . Environmental Microbiology Reports, 2021, 13, 878-883.	2.4	13
43	Cold-water corals and hydrocarbon-rich seepage in Pompeia Province (Gulf of Cádiz) – living on the edge. Biogeosciences, 2019, 16, 1607-1627.	3.3	12
44	Metagenomes of Wastewater at Different Treatment Stages in Central Germany. Microbiology Resource Announcements, 2020, 9, .	0.6	12
45	Soil bacterial community structures in relation to different oil palm management practices. Scientific Data, 2020, 7, 421.	5.3	11
46	Saprotrophic and Ectomycorrhizal Fungi Contribute Differentially to Organic P Mobilization in Beech-Dominated Forest Ecosystems. Frontiers in Forests and Global Change, 2020, 3, .	2.3	11
47	Characterization of glyphosateâ€resistant <i>Burkholderia anthina</i> and <i>Burkholderia cenocepacia</i> isolates from a commercial Roundup® solution. Environmental Microbiology Reports, 2022, 14, 70-84.	2.4	11
48	Transcriptional Landscape of Ectomycorrhizal Fungi and Their Host Provides Insight into N Uptake from Forest Soil. MSystems, 2022, 7, e0095721.	3.8	11
49	Legacy Effects Overshadow Tree Diversity Effects on Soil Fungal Communities in Oil Palm-Enrichment Plantations. Microorganisms, 2020, 8, 1577.	3.6	9
50	Thermophilic Composting of Human Feces: Development of Bacterial Community Composition and Antimicrobial Resistance Gene Pool. Frontiers in Microbiology, 2022, 13, 824834.	3.5	8
51	Bioleaching potential of bacterial communities in historic mine waste areas. Environmental Earth Sciences, 2018, 77, 1.	2.7	7
52	Formation of Siderite in Microbial Microcosms Derived from a Marine Sediment. Geomicrobiology Journal, 2020, 37, 475-485.	2.0	6
53	Metagenome-Assembled Genome Sequences from Different Wastewater Treatment Stages in Germany. Microbiology Resource Announcements, 2021, 10, e0050421.	0.6	6
54	Soil Layers Matter: Vertical Stratification of Root-Associated Fungal Assemblages in Temperate Forests Reveals Differences in Habitat Colonization. Microorganisms, 2021, 9, 2131.	3.6	6

#	Article	IF	CITATIONS
55	Metagenomic Insights Into the Changes of Antibiotic Resistance and Pathogenicity Factor Pools Upon Thermophilic Composting of Human Excreta. Frontiers in Microbiology, 2022, 13, 826071.	3.5	6
56	First Insights Into Bacterial Gastrointestinal Tract Communities of the Eurasian Beaver (Castor fiber). Frontiers in Microbiology, 2019, 10, 1646.	3.5	4
57	Early Effects of Fertilizer and Herbicide Reduction on Root-Associated Biota in Oil Palm Plantations. Agronomy, 2022, 12, 199.	3.0	4
58	Bovine Rumen Microbiome: Impact of DNA Extraction Methods and Comparison of Non-Invasive Sampling Sites. Ruminants, 2022, 2, 112-132.	1.1	4
59	DNA- and RNA-based bacterial communities and geochemical zonation under changing sediment porewater dynamics on the Aldabra Atoll. Scientific Reports, 2022, 12, 4257.	3.3	4
60	Complete Genome of Roseobacter ponti DSM 106830T. Genome Biology and Evolution, 2020, 12, 1013-1018.	2.5	3
61	Novel Antimicrobial Cellulose Fleece Inhibits Growth of Human-Derived Biofilm-Forming Staphylococci During the SIRIUS19 Simulated Space Mission. Frontiers in Microbiology, 2020, 11, 1626.	3.5	3
62	Metagenome Sequences of a Wastewater Treatment Plant Digester Sludge-Derived Enrichment Culture. Microbiology Resource Announcements, 2020, 9, .	0.6	2
63	Pontibacillus sp. ALD_SL1 and Psychroflexus sp. ALD_RP9, two novel moderately halophilic bacteria isolated from sediment and water from the Aldabra Atoll, Seychelles. PLoS ONE, 2021, 16, e0256639.	2.5	2
64	Draft Genome Sequence of Saccharomyces cerevisiae LW2591Y, a Laboratory Strain for <i>In Vivo</i> Multigene Assemblies. Microbiology Resource Announcements, 2021, 10, .	0.6	1
65	Metagenomic Screening for Lipolytic Genes Reveals an Ecology-Clustered Distribution Pattern. Frontiers in Microbiology, 0, 13 , .	3.5	1
66	Complete Genome Sequence of Escherichia coli GW-AmxH19, Isolated from Hospital Wastewater in Greifswald, Germany. Microbiology Resource Announcements, 2020, 9, .	0.6	0
67	Optimising High-Throughput Sequencing Data Analysis, from Gene Database Selection to the Analysis of Compositional Data: A Case Study on Tropical Soil Nematodes. SSRN Electronic Journal, 0, , .	0.4	0
68	Decoupling of Pore Water Chemistry, Bacterial Community Profiles, and Carbonate Mud Diagenesis in a Land-Locked Pool on Aldabra (Seychelles, Indian Ocean). Geomicrobiology Journal, 0, , 1-19.	2.0	0