List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2938184/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dataset for the synthesis, characterisation and application of cobalt and nitrogen co-doped TiO2 anatase nanoparticles on triclosan photodegradation using visible LED light. Data in Brief, 2022, 40, 107696.	0.5	1
2	Photocatalytic degradation of acetaminophen and caffeine using magnetite–hematite combined nanoparticles: kinetics and mechanisms. Environmental Science and Pollution Research, 2021, 28, 17228-17243.	2.7	15
3	Visible light photocatalytic degradation of amitriptyline using cobalt doped titanate nanowires: Kinetics and characterization of transformation products. Journal of Environmental Chemical Engineering, 2020, 8, 103585.	3.3	10
4	Solid state synthesis and photocatalytic activity of bio-inspired calcium manganese oxide catalysts. Journal of Solid State Chemistry, 2020, 288, 121390.	1.4	9
5	Photodegradation of chloramphenicol and paracetamol using PbS/TiO2 nanocomposites produced by green synthesis. Journal of the Iranian Chemical Society, 2020, 17, 2013-2031.	1.2	32
6	Comparative study on photocatalytic degradation of the antidepressant trazodone using (Co, Fe and) Tj ETQq0 Chemosphere, 2020, 259, 127486.	0 0 rgBT / 4.2	Overlock 10 ⁻ 10
7	Impact of Fe, Mn co-doping in titanate nanowires photocatalytic performance for emergent organic pollutants removal. Chemosphere, 2020, 250, 126240.	4.2	30
8	A comparative study on emergent pollutants photo-assisted degradation using ruthenium modified titanate nanotubes and nanowires as catalysts. Journal of Environmental Sciences, 2020, 92, 38-51.	3.2	11
9	Photocatalytic degradation of cyclophosphamide and ifosfamide: Effects of wastewater matrix, transformation products and in silico toxicity prediction. Science of the Total Environment, 2019, 692, 503-510.	3.9	25
10	Photocatalytic degradation of amitriptyline, trazodone and venlafaxine using modified cobalt-titanate nanowires under UV–Vis radiation: Transformation products and in silico toxicity. Chemical Engineering Journal, 2019, 373, 1338-1347.	6.6	23
11	Influence of Re and Ru doping on the structural, optical and photocatalytic properties of nanocrystalline TiO2. SN Applied Sciences, 2019, 1, 1.	1.5	9
12	Degradation of duloxetine: Identification of transformation products by UHPLC-ESI(+)-HRMS/MS, in silico toxicity and wastewater analysis. Journal of Environmental Sciences, 2019, 82, 113-123.	3.2	12
13	When gold stops glittering: corrosion mechanisms of René Lalique's Art Nouveau jewellery. Journal of Analytical Atomic Spectrometry, 2019, 34, 1216-1222.	1.6	2
14	Improved performance of titanate nanostructures for manganese adsorption and posterior pollutants photocatalytic degradation. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 378, 9-16.	2.0	11
15	Ruthenium-Modified Titanate Nanowires for the Photocatalytic Oxidative Removal of Organic Pollutants from Water. ACS Applied Nano Materials, 2019, 2, 1341-1349.	2.4	15
16	Transformation products of citalopram: Identification, wastewater analysis and in silico toxicological assessment. Chemosphere, 2019, 217, 858-868.	4.2	28
17	In situ synthesis and modification of cotton fibers with bismuthoxychloride and titanium dioxide nanoparticles for photocatalytic applications. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 357, 201-212.	2.0	17
18	Exploring bulk and colloidal Mg/Al hydrotalcite–Au nanoparticles hybrid materials in aerobic olefin epoxidation. Journal of Catalysis, 2018, 358, 187-198.	3.1	21

#	Article	IF	CITATIONS
19	Enhanced photocatalytic degradation of psychoactive substances using amine-modified elongated titanate nanostructures. Environmental Science: Nano, 2018, 5, 350-361.	2.2	16
20	Evaluation and optimisation of methylene blue removal measurement uncertainty in photodegradation studies. Accreditation and Quality Assurance, 2017, 22, 217-226.	0.4	6
21	Enhancing alkane oxidation using Co-doped SnO2 nanoparticles as catalysts. Catalysis Communications, 2017, 96, 19-22.	1.6	3
22	The influence of the constituent elements on the corrosion mechanisms of silver alloys in sulphide environments: the case of sterling silver. RSC Advances, 2017, 7, 28564-28572.	1.7	8
23	Titanate nanofibers sensitized with ZnS and Ag2S nanoparticles as novel photocatalysts for phenol removal. Applied Catalysis B: Environmental, 2017, 218, 709-720.	10.8	49
24	Novel titanate nanotubes-cyanocobalamin materials: Synthesis and enhanced photocatalytic properties for pollutants removal. Solid State Sciences, 2017, 63, 30-41.	1.5	21
25	Titanate nanotubes sensitized with silver nanoparticles: Synthesis, characterization and in-situ pollutants photodegradation. Applied Surface Science, 2016, 385, 18-27.	3.1	16
26	Novel one-pot synthesis and sensitisation of new BiOCl–Bi ₂ S ₃ nanostructures from DES medium displaying high photocatalytic activity. RSC Advances, 2016, 6, 77329-77339.	1.7	21
27	Titanate Nanorods Modified with Nanocrystalline ZnS Particles and Their Photocatalytic Activity on Pollutant Removal. Journal of Materials Science and Technology, 2016, 32, 1122-1128.	5.6	17
28	Corrosion of silver alloys in sulphide environments: a multianalytical approach for surface characterisation. RSC Advances, 2016, 6, 51856-51863.	1.7	14
29	The effect of ionic Co presence on the structural, optical and photocatalytic properties of modified cobalt–titanate nanotubes. Physical Chemistry Chemical Physics, 2016, 18, 18081-18093.	1.3	28
30	Biotechnologically obtained nanocomposites: A practical application for photodegradation of Safranin-T under UV-Vis and solar light. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2015, 50, 996-1010.	0.9	8
31	Synthesis of titanate nanofibers co-sensitized with ZnS and Bi 2 S 3 nanocrystallites and their application on pollutants removal. Materials Research Bulletin, 2015, 72, 20-28.	2.7	20
32	Titanate nanofibers sensitized with nanocrystalline Bi2S3 as new electrocatalytic materials for ascorbic acid sensor applications. Electrochimica Acta, 2014, 135, 121-127.	2.6	38
33	New Nanocomposite Materials by Incorporation of Nanocrystalline TiO2 Particles into Polyaniline Conductive Films. Journal of Materials Science and Technology, 2014, 30, 449-454.	5.6	12
34	Synthesis of sub-5Ânm Co-doped SnO2 nanoparticles and their structural, microstructural, optical and photocatalytic properties. Materials Chemistry and Physics, 2014, 147, 563-571.	2.0	80
35	Synthesis and properties of Co-doped titanate nanotubes and their optical sensitization with methylene blue. Materials Chemistry and Physics, 2013, 142, 355-362.	2.0	40
36	Green synthesis of covellite nanocrystals using biologically generated sulfide: Potential for bioremediation systems. Journal of Environmental Management, 2013, 128, 226-232.	3.8	20

#	Article	IF	CITATIONS
37	New hybrid titanate elongated nanostructures through organic dye molecules sensitization. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	12
38	Synthesis and properties of Polythionine/Co-doped titanate nanotubes hybrid materials. Electrochimica Acta, 2013, 113, 817-824.	2.6	6
39	Pulsed current electrodeposition of Zn–Ag2S/TiO2 nanocomposite films as potential photoelectrodes. Journal of Solid State Electrochemistry, 2013, 17, 2349-2359.	1.2	6
40	Photocatalytic activity and reusability study of nanocrystalline TiO2 films prepared by sputtering technique. Applied Surface Science, 2013, 264, 111-116.	3.1	49
41	Ferromagnetic Order in Aged Co-Doped TiO ₂ Anatase Nanopowders. Journal of Nanoscience and Nanotechnology, 2012, 12, 6850-6854.	0.9	9
42	Synthesis, optical, and photocatalytic properties of a new visible-light-active ZnFe2O4–TiO2 nanocomposite material. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	18
43	Synthesis of nanocrystalline ZnS using biologically generated sulfide. Hydrometallurgy, 2012, 117-118, 57-63.	1.8	29
44	Photocatalytic degradation of rhodamine B using Mo heterogeneous catalysts under aerobic conditions. Applied Catalysis B: Environmental, 2012, 113-114, 180-191.	10.8	36
45	Influence of the sodium/proton replacement on the structural, morphological and photocatalytic properties of titanate nanotubes. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 232, 50-56.	2.0	52
46	Synthesis of titanate nanostructures using amorphous precursor material and their adsorption/photocatalytic properties. Journal of Materials Science, 2012, 47, 4305-4312.	1.7	44
47	Influence of calcination parameters on the TiO2 photocatalytic properties. Materials Chemistry and Physics, 2011, 125, 20-25.	2.0	83
48	Photocatalytic studies of antimonate compounds prepared by a self-combustion route. Materials Chemistry and Physics, 2010, 119, 418-423.	2.0	6
49	Photocatalytic decolorization of methylene blue in the presence of TiO2/ZnS nanocomposites. Journal of Hazardous Materials, 2009, 161, 545-550.	6.5	187
50	Photosensitization of TiO2 by Ag2S and its catalytic activity on phenol photodegradation. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 204, 168-173.	2.0	107
51	A New Chemical Route to Synthesise TMâ€Đoped (TM = Co, Fe) TiO ₂ Nanoparticles. European Journal of Inorganic Chemistry, 2008, 2008, 961-965.	1.0	39
52	From Single-Molecule Precursors to Coupled Ag2S/TiO2Nanocomposites. European Journal of Inorganic Chemistry, 2008, 2008, 4380-4386.	1.0	27
53	Adsorption and catalytic properties of SiO2/Bi2S3 nanocomposites on the methylene blue photodecolorization process. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 328, 107-113.	2.3	36
54	Magnetic properties of Co-doped TiO2 anatase nanopowders. Applied Physics Letters, 2008, 93, .	1.5	47

#	Article	IF	CITATIONS
55	Preparation of lead and tin oxide thin films by spin coating and their application on the electrodegradation of organic pollutants. Journal of Solid State Electrochemistry, 2006, 10, 41-47.	1.2	12
56	Synthesis of molybdenum (IV) disulfide using a single-source method. Materials Research Bulletin, 2004, 39, 357-363.	2.7	10
5 7	The LP-MOCVD of CdS/Bi2S3 bilayers using single-molecule precursors. Materials Letters, 2004, 58, 119-122.	1.3	14
58	Zinc Sulfide Nanocoating of Silica Submicron Spheres Using a Single-source Method. Journal of Nanoscience and Nanotechnology, 2004, 4, 146-150.	0.9	20
59	Aerosol-assisted metallo-organic chemical vapour deposition of Bi2Se3 films using single-molecule precursors. The crystal structure of bismuth(iii) dibutyldiselenocarbamate. Journal of Materials Chemistry, 2003, 13, 3006.	6.7	30
60	Optical Properties of the Synthetic Nanocomposites SiO ₂ /CdS/Poly(styrene- <i>co</i> -maleic anhydride) and SiO ₂ /CdS/Poly(styrene- <i>co</i> -maleimide). Journal of Nanoscience and Nanotechnology, 2002, 2, 177-181.	0.9	5
61	The Synthesis of SiO2@CdS Nanocomposites Using Single-Molecule Precursors. Chemistry of Materials, 2002, 14, 2900-2904.	3.2	58
62	Use of Dialkyldithiocarbamato Complexes of Bismuth(III) for the Preparation of Nano- and Microsized Bi2S3Particles and the X-ray Crystal Structures of [Bi{S2CN(CH3)(C6H13)}3] and [Bi{S2CN(CH3)(C6H13)}3(C12H8N2)]. Chemistry of Materials, 2001, 13, 2103-2111.	3.2	104
63	The Use of Bismuth(III) Dithiocarbamato Complexes as Precursors for the Low-Pressure MOCVD of Bi2S3. Chemical Vapor Deposition, 2000, 6, 230-232.	1.4	51
64	Preparation of Bi2S3 nanofibers using a single-source method. Journal of Materials Science Letters, 2000, 19, 859-861.	0.5	30
65	Synthesis of PbSe nanocrystallites using a single-source method. The X-ray crystal structure of lead (II) diethyldiselenocarbamate. Polyhedron, 1999, 18, 1171-1175.	1.0	53