
Karl Seff

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2937855/publications.pdf Version: 2024-02-01

KADI SEFE

#	Article	IF	CITATIONS
1	Using Crystallography and NMR to Count the Number of Three-Aluminum Six-Rings in Fully Zn ²⁺ -Exchanged Zeolite Y. These Six-Rings Concentrate at Single Six-Ring Positions. Journal of Physical Chemistry C, 2021, 125, 583-592.	3.1	4
2	Water Molecules in Zeolite Y Enhance the Photoluminescent Properties of Its Cesium Lead Bromide Quantum Dots, Na4Cs6PbBr48+. Journal of Physical Chemistry C, 2021, 125, 5904-5918.	3.1	3
3	Crystal Structure and Luminescence of Sn,I,Cs,Na–Y, a Lead-Free Zeolite Containing Tetrahedrally Distorted Cubes of Sn4l44+. Journal of Physical Chemistry C, 2021, 125, 15696-15710.	3.1	0
4	Quantum Dots of [Na ₄ Cs ₆ PbBr ₄] ⁸⁺ , Water Stable in Zeolite X, Luminesce Sharply in the Green. Advanced Materials, 2020, 32, e2001868.	21.0	14
5	Crystal structure and X-ray luminescence of zeolite Y (Si/Al = 1.69) containing extraframework hafnium(IV). Microporous and Mesoporous Materials, 2019, 288, 109552.	4.4	3
6	Crystal structure of a hydrogen sulfide sorption complex of anhydrous Mn2+-exchanged zeolite Y (FAU, Si/Al = 1.56). Microporous and Mesoporous Materials, 2019, 279, 432-438.	4.4	7
7	Structure and luminescence of extraframework TiCl62â^ in Cs+-containing zeolite LTA. Journal of Porous Materials, 2019, 26, 1079-1089.	2.6	2
8	Identification and structures of the X-ray induced luminescence centers in the zeolites Zr,X,Cs,Na-LTA, X = Cl, Br, and I. Microporous and Mesoporous Materials, 2019, 278, 443-454.	4.4	2
9	Crystal Structure of Zeolite LTA Containing Extraframework Tungsten(VI) Ions. Journal of Physical Chemistry C, 2018, 122, 6661-6668.	3.1	2
10	Structure of a cyclohexane sorption complex of partially dehydrated, fully Mn2+-exchanged zeolite Y (FAU, Si/Al = 1.56). Microporous and Mesoporous Materials, 2018, 264, 139-146.	4.4	3
11	Disproportionation of an Element in a Zeolite. III. Crystal Structure of a High-Temperature Sulfur Sorption Complex of Zeolite LTA Containing Two New Ions: Perthiosulfite, S ₄ ^{2a€"} , and the Trisulfur Cation, S ₃ ²⁺ . Journal of Physical Chemistry C, 2018, 122, 28133-28141.	3.1	7
12	Preparation, crystal structure, and luminescence of zeolite Ta,Cl,Cs,Na-A containing a cubic Cs11TaCl 6 10+ continuum. Journal of Porous Materials, 2017, 24, 1117-1128.	2.6	2
13	Exchanging noble and seminoble cations into zeolites by oxygen vacancy ion exchange (OVIE). Microporous and Mesoporous Materials, 2017, 244, 47-49.	4.4	4
14	The Pentatin Cation in Zeolite Y: Thallous Ion Exchange and Crystal Structure of Sn36Cl11 [Si128Al64O384]-FAU Containing Sn512+, Sn2Cl3+, and Sn3Cl5+. Journal of Physical Chemistry C, 2017, 121, 471-480.	3.1	4
15	Progress toward Zeolite-Based Self-Luminous Sensors for Radioactive Isotopes such as ²⁰¹ Tl and ¹³⁷ Cs: Structures and Luminescence of Hf,Cl,Tl-A and Hf,Cl,Cs,Na-A. Journal of Physical Chemistry C, 2017, 121, 19619-19633.	3.1	9
16	Structures of the Subnanometer Clusters of Cadmium Sulfide Encapsulated in Zeolite Y: Cd ₄ S ⁶⁺ and Cd(SHCd) ₄ ⁶⁺ . Journal of Physical Chemistry C, 2016, 120, 16722-16731.	3.1	13
17	Preparation, Crystal Structure, and Luminescence Properties of Zeolite LTA Containing Extraframework Tantalum(V), Tantalum(II), Thallium(I), and Chloride. Journal of Physical Chemistry C, 2016, 120, 12139-12148.	3.1	6
18	Encapsulating Luminescent Materials in Zeolites. III. Crystal Structure and Scintillation Properties of Cs,Na-LTA Treated with Zirconium Chloride Vapor. Journal of Physical Chemistry C, 2016, 120, 18682-18693.	3.1	7

#	Article	IF	CITATIONS
19	Surprising Intrazeolitic Chemistry of Silver. Journal of Physical Chemistry C, 2016, 120, 5277-5287.	3.1	18
20	Using the Thallous Ion Exchange Method to Exchange Tin into High Alumina Zeolites. 1. Crystal Structure of Sn ²⁺ _{5.3} Sn ⁴⁺ _{0.8} Cl [–] _{1.8} [Si Journal of Physical Chemistry C. 2015. 119. 3244-3252. Exchange of a Tetrapositive Cation into a Zeolite and a New Inorganic Scintiliator. I. Crystal	<sub<sup>3.12<td>sub¹²Al₁</td></sub<sup>	sub ¹² Al ₁
21	Structures and Scintillation Properties of Anhydrous Zr _{1.7} Tl _{5.4} Cl _{1.7} –LTA and Zr _{2.1} Tl _{1.6} Cl _{3.0} –LTA. Journal of Physical Chemistry C, 2015, 119,	3.1	13
22	Encapsulating Photoluminescent Materials in Zeolites. II. Crystal Structure of Fully Dehydrated Ce ₂₁ H ₄₆ O ₁₈ –Y (Si/Al = 1.69) Containing Ce ₄ O ₄ ⁴⁺ , CeOH ²⁺ , Ce ³⁺ , and H ⁺ . Journal of Physical Chemistry C, 2015, 119, 24501-24511.	3.1	16
23	The dependence of Co2+-exchange into zeolite FAU on its Si/Al ratio. Journal of Porous Materials, 2014, 21, 869-882.	2.6	6
24	First Successful Application of the Thallous Ion Exchange (TIE) Method. Preparation of Fully Indium-Exchanged Zeolite Y (FAU, Si/Al = 1.69). Journal of Physical Chemistry C, 2014, 118, 24655-24661.	3.1	10
25	Introducing copper ions into zeolite Y by the thallous ion exchange method: single crystal structure of Cu21.6Tl39.2 [Si121Al71O384]–FAU. Journal of Porous Materials, 2014, 21, 321-330.	2.6	29
26	Encapsulating Photoluminescent Materials in Zeolites. Crystal Structure of Fully Dehydrated Zeolite Y (Si/Al = 1.69) Containing Eu ³⁺ . Journal of Physical Chemistry C, 2014, 118, 11014-11025.	3.1	13
27	Crystallographic Verification that Copper(II) Coordinates to Four of the Oxygen Atoms of Zeolite 6-Rings. Two Single-Crystal Structures of Fully Dehydrated, Largely Cu ²⁺ -Exchanged Zeolite Y (FAU, Si/Al = 1.56). Journal of Physical Chemistry C, 2012, 116, 963-974.	3.1	52
28	Li ⁺ Exchange into Zeolite Na–Y (FAU) from Aqueous Methanol. Single-Crystal Structures of Fully Dehydrated Li,Na–Y. Journal of Physical Chemistry C, 2012, 116, 9009-9018.	3.1	39
29	Single-Crystal Structures of Fully and Partially Dehydrated Zeolite Y (FAU, Si/Al = 1.56) Ni ²⁺ Exchanged at a Low pH, 4.9. Journal of Physical Chemistry C, 2012, 116, 13985-13996.	3.1	45
30	Framework Sites Preferred by Aluminum in Zeolite ZSM-5. Structure of a Fully Dehydrated, Fully Cs ⁺ -Exchanged ZSM-5 Crystal (MFI, Si/Al = 24). Journal of Physical Chemistry C, 2011, 115, 24823-24838.	3.1	50
31	The Pentagallium Cation in Zeolite Y. Preparation and Crystal Structure of Ga ₄₂ Tl _{9.3} â^`Si ₁₂₁ Al ₇₁ O ₃₈₄ Containing Ga ₅ ⁷⁺ , Ga ⁺ , Ga ²⁺ , Ga ³⁺ , and Tl ⁺ , lournal of Physical Chemistry C. 2011, 115, 2750-2760.	3.1	45
32	Single-crystal structures of highly -exchanged, fully deaminated, and fully Tl+-exchanged zeolite Y (FAU, Si/Al=1.56), all fully dehydrated. Microporous and Mesoporous Materials, 2010, 129, 11-21.	4.4	76
33	A General Method for the Ion Exchange of Zeolites Utilizing the Volatility of Thallous Compounds as Leaving Products. Journal of Physical Chemistry C, 2010, 114, 13295-13299.	3.1	18
34	Tetrahydroxytetraindium(III) Nanoclusters, In ₄ (OH) ₄ ⁸⁺ , in Air-Oxidized Fully In-Exchanged Zeolite Y (FAU, Si/Al = 1.69). Preparation and Crystal Structures of Inâ^'Y and Inâ^'Y[In ₄ (OH) ₄]. Journal of Physical Chemistry C, 2010, 114, 15741-15754.	3.1	46
35	Detailed Determination of the Tl ⁺ Positions in Zeolite Tlâ^'ZSM-5. Single-Crystal Structures of Fully Dehydrated Tlâ^'ZSM-5 and Hâ^'ZSM-5 (MFI, Si/Al = 29). Additional Evidence for a Nonrandom Distribution of Framework Aluminum. Journal of Physical Chemistry C, 2009, 113, 19937-19936.	3.1	25
36	Crystal Structures of Vacuum-Dehydrated Ni ²⁺ -Exchanged Zeolite Y (FAU, Si/Al = 1.69) Containing Three-Coordinate Ni ²⁺ , Ni ₈ O ₄ · <i>x</i> H ₂ O ⁸⁺ , <i>x</i> ≤4, Clusters with Near Cubic Ni ₄ O ₄ Cores, and H ⁺ . Journal of Physical Chemistry C, 2009, 113, 5164-5181.	3.1	56

#	Article	IF	CITATIONS
37	Single Crystal Structure of Zeolite A (LTA) Containing Ag4Cl4Nanoclusters and Reduced 1,3,5-Tripyrylium Dimers with Remarkably Short 2.43 Ã Interplanar Spacings. Journal of Physical Chemistry C, 2008, 112, 11181-11193.	3.1	6
38	DOING CHEMISTRY IN A ONE-NANOMETER TEST TUBE (IN A ZEOLITE). Comments on Inorganic Chemistry, 2007, 28, 173-179.	5.2	2
39	Six Single-Crystal Structures Showing the Dehydration, Deamination, Dealumination, and Decomposition of NH4+-Exchanged Zeolite Y (FAU) with Increasing Evacuation Temperature. Identification of a Lewis Acid Site. Journal of Physical Chemistry C, 2007, 111, 18294-18306.	3.1	69
40	Crystal structures of the NO and NO2 sorption complexes of fully dehydrated fully Mn2+-exchanged zeolite X (FAU). Microporous and Mesoporous Materials, 2006, 93, 12-22.	4.4	37
41	Single crystal structure of fully dehydrated fully K+-exchanged zeolite Y (FAU), K71Si121Al71O384. Microporous and Mesoporous Materials, 2006, 92, 234-242.	4.4	73
42	Single crystal structure of fully dehydrated fully Tl+-exchanged zeolite Y, â^£Tl71â^£[Si121Al71O384]-FAU. Microporous and Mesoporous Materials, 2006, 94, 313-319.	4.4	54
43	Cationic zinc clusters with mean formula in the sodalite cavities of zeolite Y (FAU). Microporous and Mesoporous Materials, 2005, 85, 351-354.	4.4	50
44	Comment on "Synthesis of Fully Dehydrated Fully Zn2+-Exchanged Zeolite Y and Its Crystal Structure Determined by Pulsed-Neutron Diffraction― Cationic Zinc Clusters Formally Containing Zn(I) in the Sodalite Cavities of Zeolite Y (FAU). Journal of Physical Chemistry B, 2005, 109, 13840-13841.	2.6	11
45	Further crystallographic confirmation that Cs+ ions can occupy sodalite cavities and double six-rings. Crystal structure of fully dehydrated partially Cs+-exchanged zeolite X, Cs45Na47 [Si100Al92O384]-FAU. Microporous and Mesoporous Materials, 2004, 71, 65-75.	4.4	49
46	Synthesis and Crystal Structure of Ag4I4Nanoclusters in the Sodalite Cavities of Fully K+-Exchanged Zeolite A. Journal of Physical Chemistry B, 2004, 108, 3168-3173.	2.6	18
47	Crystal structure of Mn46Si100Al92O384·89H2S, a hydrogen sulfide sorption complex of fully dehydrated Mn2+-exchanged zeolite X. Microporous and Mesoporous Materials, 2003, 63, 21-31.	4.4	47
48	Two Crystal Structures of Fully Dehydrated, Fully Ag+-Exchanged Zeolite X. Dehydration in Oxygen Prevents Ag+Reduction. Without Oxygen, Ag8n+(Td) andcyclo-Ag4m+(nearS4) Form. Journal of Physical Chemistry B, 2003, 107, 6938-6945.	2.6	53
49	Spatially Ordered Quantum Dot Array of Indium Nanoclusters in Fully Indium-Exchanged Zeolite X. Journal of Physical Chemistry B, 2003, 107, 1120-1128.	2.6	60
50	Disproportionation of an Element in a Zeolite. I. Crystal Structure of a Sulfur Sorption Complex of Dehydrated, Fully Cd2+-Exchanged Zeolite X. Synthesis of Tetrahedral S44+andn-S42+, Two New Polyatomic Cations of Sulfur. Journal of Physical Chemistry B, 2003, 107, 3117-3123.	2.6	57
51	Disproportionation of an Element in a Zeolite. II. Crystal Structure of an Iodine Sorption Complex of Dehydrated Fully Cd2+-Exchanged Zeolite X Containingn-15-as I-â~ìI3+â~ìI-and Squarecyclo-142+. Journal of Physical Chemistry B, 2003, 107, 10709-10714.	2.6	37
52	Reaction of Fully Indium-Exchanged Zeolite A with Hydrogen Sulfide. Crystal Structures of Indium-Exchanged Zeolite A Containing In2S, InSH, Sorbed H2S, and (In5)7+. Journal of Physical Chemistry B, 2002, 106, 4578-4587.	2.6	31
53	Crystal Structure of a Mesitylene Sorption Complex of Dehydrated Fully Ca2+-Exchanged Zeolite X. Sorbed Mesitylene Appears to be Significantly Nonplanar. Journal of Physical Chemistry B, 2002, 106, 5827-5832.	2.6	46
54	Crystal Structure of a Cadmium Sorption Complex of Dehydrated Fully Cd2+-Exchanged Zeolite X Containing Cd2+, Cd+, and Cd0. Journal of Physical Chemistry B, 2002, 106, 7569-7573.	2.6	35

#	Article	IF	CITATIONS
55	Ronneburgite, K2MnV4O12, a new mineral from Ronneburg, Thuringia, Germany: Description and crystal structure. American Mineralogist, 2001, 86, 1081-1086.	1.9	13
56	Some chemical treatments diminish the long-range ordering in the aluminosilicate framework of zeolite X. Microporous and Mesoporous Materials, 2001, 42, 299-306.	4.4	22
57	Verification of linear Na32+ clusters in zeolite X. Microporous and Mesoporous Materials, 2001, 46, 111-113.	4.4	6
58	Structure of a cyclopropane sorption complex of dehydrated fully Mn2+-exchanged zeolite X. Microporous and Mesoporous Materials, 2000, 40, 247-255.	4.4	37
59	Weak Ag+–Ag+ bonding in zeolite X. Crystal structures of Ag92Si100Al92O384 hydrated and fully dehydrated in flowing oxygen. Microporous and Mesoporous Materials, 2000, 41, 49-59.	4.4	34
60	Structure of a cyclopropane sorption complex of dehydrated fully Cd2+-exchanged zeolite A. Microporous and Mesoporous Materials, 2000, 41, 61-68.	4.4	10
61	Cation Crowding in Zeolites. Reinvestigation of the Crystal Structure of Dehydrated Potassium-Exchanged Zeolite X. Journal of Physical Chemistry B, 2000, 104, 8946-8951.	2.6	58
62	Crystallographic Study of the Reaction of Zinc Vapor with Fully Cd2+-Exchanged Zeolite X. Complete Reduction of Cd2+ by Zn, Extraction of SiO44- and AlO45- from the Zeolite Framework, and Reduction of Si4+ to Si. Journal of Physical Chemistry B, 2000, 104, 9811-9816.	2.6	28
63	Crystal Structure of Partially Pd2+-Exchanged Zeolite X Dehydrated in Oxygen at 400 °C. Formation of Linear Pd2O3Clusters Proposed To Be HOâ"PdIVâ"Oâ"PdIVâ"OH in (Pd2+)14(HOPdOPdOH4+)8(Na+)32â"Si100Al92O384. Journal of Physical Chemistry B, 2000, 104, 2490-2494.	2.6	45
64	Zn+Cations, Probable Tl4Zn12and Tl6Clusters, and Zeolite Desilication (Less Likely Dealumination):Â Crystallographic Study of the Incomplete Reaction of Zn Vapor with Tl+-Exchanged Zeolite X. Journal of Physical Chemistry B, 2000, 104, 515-525.	2.6	46
65	A Cationic Rubidium Continuum in Zeolite X. Journal of Physical Chemistry B, 2000, 104, 11162-11167.	2.6	34
66	Crystal Structures of Fully Indium-Exchanged Zeolite X. Journal of Physical Chemistry B, 2000, 104, 8372-8381.	2.6	51
67	Crystal Structures of Fully La3+-Exchanged Zeolite X:Â an Intrazeolitic La2O3Continuum, Hexagonal Planar and Trigonally Monocapped Trigonal Prismatic Coordination. Journal of Physical Chemistry B, 2000, 104, 2224-2236.	2.6	64
68	Crystal structure of an ammonia sorption complex of dehydrated fully Ca2+-exchanged zeolite X. Microporous and Mesoporous Materials, 1999, 28, 173-183.	4.4	50
69	Structures of cobalt(II)-exchanged zeolite X. Microporous and Mesoporous Materials, 1999, 33, 265-280.	4.4	103
70	Reinvestigation of the Crystal Structure of Dehydrated Sodium Zeolite X. Journal of Physical Chemistry B, 1999, 103, 9512-9518.	2.6	122
71	Structure of Dehydrated Zn2+-Exchanged Zeolite X. Overexchange, Framework Dealumination and Reorganization, Stoichiometric Retention of Monomeric Tetrahedral Aluminate. Journal of Physical Chemistry B, 1999, 103, 5631-5636.	2.6	61
72	Crystal Structure of a Zinc Sorption Complex of Cd2+-Exchanged Zeolite X Containing Tetrahedral Cd2+4(μ3-Zn0Cd2+Zn0)4 Clusters. Journal of Physical Chemistry B, 1999, 103, 6493-6497.	2.6	53

#	Article	IF	CITATIONS
73	Hydronium Ions in Zeolites. 1. Structures of Partially and Fully Dehydrated Na,H3Oâ^'X by X-ray and Neutron Diffraction. Journal of Physical Chemistry B, 1999, 103, 10365-10372.	2.6	62
74	Crystal Structure of Anhydrous NH4+-Exchanged Zeolite X Partially Reacted with HgCl2 Vapor. Cationic Chloromercuric Clusters, Regular Octahedral Hg(II), and Regular Trigonal Hg(II). Journal of Physical Chemistry B, 1999, 103, 10409-10416.	2.6	35
75	Crystal structure of a hydrogen sulfide sorption complex of fully Ca2+-exchanged zeolite X. Microporous and Mesoporous Materials, 1998, 23, 33-44.	4.4	19
76	Crystal structure of a carbon monoxide sorption complex of dehydrated fully manganese(II)-exchanged zeolite X. Microporous and Mesoporous Materials, 1998, 26, 101-107.	4.4	37
77	Crystal Structure of a Benzene Sorption Complex of Dehydrated Fully Ca2+-Exchanged Zeolite X. Journal of Physical Chemistry B, 1998, 102, 6071-6077.	2.6	59
78	Partial Structures of Fully Dehydrated Ni30Na7Cl12Si137Al55O384(Solid-State Nickel(II)-Exchanged) Tj ETQq0 0 Chemistry B, 1998, 102, 2688-2695.	0 rgBT /0 2.6	verlock 10 Tf 63
79	Crystal Structure of Indium-Exchanged Zeolite A Containing Sorbed Disulfur. Journal of Physical Chemistry B, 1998, 102, 17-23.	2.6	33
80	Crystal Structures of Dehydrated Fully Mn2+-Exchanged Zeolite X and of Its Ethylene Sorption Complex. Journal of Physical Chemistry B, 1997, 101, 9041-9045.	2.6	66
81	Crystal Structures of the Ethylene and Acetylene Sorption Complexes of Fully Ca2+-Exchanged Zeolite X. Journal of Physical Chemistry B, 1997, 101, 3091-3096.	2.6	58
82	Crystal Structure of an Ethylene Sorption Complex of Cd2+-Exchanged Zeolite X, Cd46Si100Al92O384·29.5C2H4. Journal of Physical Chemistry B, 1997, 101, 2138-2142.	2.6	48
83	Crystal Structure of Zeolite X Exchanged with Pb(II) at pH 6.0 and Dehydrated:Â (Pb4+)14(Pb2+)18(Pb4O4)8Si100Al92O384. Journal of Physical Chemistry B, 1997, 101, 5314-5318.	2.6	108
84	Crystal Structure of a Sodium Sorption Complex of Zeolite X Containing Linear Na32+Clusters. Journal of Physical Chemistry B, 1997, 101, 9022-9026.	2.6	39
85	Three Crystal Structures of Vacuum-Dehydrated Zeolite X, M46Si100Al92O384, M = Mg2+, Ca2+, and Ba2+. Journal of Physical Chemistry B, 1997, 101, 6914-6920.	2.6	97
86	Crystal structure of Zn4Na(OH)6SO4Cl·6H2O. Journal of Chemical Crystallography, 1997, 27, 325-329.	1,1	11
87	Crystal structure of fully dehydrated fully TI+ -exchanged zeolite X. Zeolites, 1997, 18, 325-333.	0.5	54
88	Crystal Structure of a Hydrogen Sulfide Sorption Complex of Dehydrated Partially Cobalt(II)-Exchanged Zeolite A. The Journal of Physical Chemistry, 1996, 100, 8373-8377.	2.9	24
89	Crystal structure of a hydrogen sulfide sorption complex of zeolite LTA. Zeolites, 1996, 17, 495-500.	0.5	13
90	Crystal Structures of Encapsulates within Zeolites. 2. Argon in Zeolite A. The Journal of Physical Chemistry, 1996, 100, 13725-13731.	2.9	10

#	Article	IF	CITATIONS
91	Two Anhydrous Zeolite X Crystal Structures, Cd46Si100Al92O384and Cd24.5Tl43Si100Al92O384. The Journal of Physical Chemistry, 1996, 100, 13720-13724.	2.9	67
92	Failure of ion exchange into zeolites A and X from four diverse nonaqueous solvents. Zeolites, 1995, 15, 377-381.	0.5	24
93	MOLECULES OF COPPER(II)I-SPARTEINE DINITRATE ARE MIXED FOUR- AND FIVE-COORDINATE IN ONE CRYSTALLINE PHASE AND ONLY FOUR-COORDINATE IN ANOTHER. Journal of Coordination Chemistry, 1995, 34, 241-252.	2.2	26
94	Crystal Structures of Fully Dehydrated Cd(II)-Exchanged Zeolite A and of Its Cadmium Sorption Complex Containing Cd2+, Cd+, Cd22+, and Cd20. The Journal of Physical Chemistry, 1994, 98, 3796-3800.	2.9	32
95	Structure of the tetrahedral sodium Na54+ cluster in zeolite X. The Journal of Physical Chemistry, 1993, 97, 12663-12664.	2.9	56
96	Cesium Vapor Reacts with K+-Exchanged Zeolite A To Give Fully Cs+-Exchanged Zeolite A Containing (Cs4)3+ Clusters. ACS Symposium Series, 1988, , 177-193.	0.5	2
97	Preparation and structure of fully caesium exchanged zeolite A and of the linear (Cs4)3+ cation. Journal of the Chemical Society Chemical Communications, 1987, , 1225.	2.0	16
98	Reaction of dehydrated Na12-A with cesium. Synthesis and crystal structure of fully dehydrated, fully cesium ion-exchanged zeolite A. Journal of the American Chemical Society, 1987, 109, 7986-7992.	13.7	54
99	Four Crystal Structures of Ba _{<i>x</i>} Na _{12-2<i>x</i>} -A (1≤i>x≮) Relating to the Instability of Barium-Exchanged Zeolite A Toward Dehydration. ACS Symposium Series, 1980, , 137-153.	0.5	3
100	Cadmium(I) and dicadmium(I). Crystal structures of cadmium(II)-exchanged zeolite A evacuated at 500.degree.C and of its cadmium sorption complex. Journal of the American Chemical Society, 1979, 101, 5235-5239.	13.7	35
101	The octahedral hexasilver molecule. Seven crystal structures of variously vacuum-dehydrated fully silver(1+)-exchanged zeolite A. Journal of the American Chemical Society, 1978, 100, 6989-6997.	13.7	95
102	Crystal structures of cyclopropane complexes of cobalt(II) and manganese(II) in partially exchanged zeolite A. Journal of the American Chemical Society, 1978, 100, 6997-7003.	13.7	44
103	The crystal structure of dehydrated fully silver(1+) ion-exchanged zeolite A reduced by hydrogen and reoxidized by oxygen, both at 330.degree.C. The loss of long range order and its subsequent return. The Journal of Physical Chemistry, 1978, 82, 921-924.	2.9	26
104	A near zero coordinate sodium ion in dehydrated zeolite 4A, Na12-A. The Journal of Physical Chemistry, 1977, 81, 2249-2251.	2.9	48
105	Crystal and molecular structure of a diradical, 1,3-dinitro-4,6-di[3-(2,2,5,5-tetramethyl)-pyrrolidinyl-N-oxide]aminobenzene monohydrate. Journal of Crystal and Molecular Structure, 1976, 6, 87-100.	0.4	1
106	Crystal structures of hydrated and dehydrated potassium-exchanged zeolite A. The Journal of Physical Chemistry, 1975, 79, 2157-2162.	2.9	66
107	Hydrated and dehydrated crystal structures of seven-twelfths cesium-exchanged zeolite A. The Journal of Physical Chemistry, 1975, 79, 2163-2167.	2.9	68