Igor D Jurberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2937791/publications.pdf

Version: 2024-02-01

40 papers 3,385 citations

279701 23 h-index 39 g-index

49 all docs

49 docs citations

49 times ranked 2588 citing authors

#	Article	IF	CITATIONS
1	A visible light-mediated three-component strategy based on the ring-opening of cyclic ethers with aryldiazoacetates and nucleophiles. Organic Chemistry Frontiers, 2022, 9, 1321-1326.	2.3	19
2	H–F bond insertions into α-diazo carbonyl compounds. Organic and Biomolecular Chemistry, 2022, 20, 6178-6182.	1.5	2
3	Cyclization Strategies Using Imide Derivatives for the Synthesis of Polycyclic Nitrogenâ€Containing Compounds. European Journal of Organic Chemistry, 2022, 2022, .	1.2	6
4	The chemistry and biology of guanidine secondary metabolites. Natural Product Reports, 2021, 38, 586-667.	5.2	30
5	A Selective C–C Bond Cleavage Strategy Promoted by Visible Light. Organic Letters, 2021, 23, 8916-8920.	2.4	23
6	Visible-Light-Mediated Strategies for the Preparation of Oxime Ethers Derived from O–H Insertions of Oximes into Aryldiazoacetates. Journal of Organic Chemistry, 2021, 86, 17528-17532.	1.7	13
7	Visible-Light-Mediated Strategies to Assemble Alkyl 2-Carboxylate-2,3,3-Trisubstituted \hat{l}^2 -Lactams and 5-Alkoxy-2,2,4-Trisubstituted Furan-3(2H)-ones Using Aryldiazoacetates and Aryldiazoketones. Organic Letters, 2021, 23, 9292-9296.	2.4	22
8	Blue Lightâ€Promoted Nâ^'H Insertion of Carbazoles, Pyrazoles and 1,2,3â€Triazoles into Aryldiazoacetates. Advanced Synthesis and Catalysis, 2020, 362, 1106-1111.	2.1	60
9	Activating Imides with Triflic Acid: A General Intramolecular Aldol Condensation Strategy Toward Indolizidine, Quinolizidine, and Valmerin Alkaloids. Organic Letters, 2020, 22, 239-243.	2.4	15
10	Diastereodivergent aminocatalyzed spirocyclization strategies using 4-alkylideneisoxazol-5-ones and methyl vinyl ketones. Organic Chemistry Frontiers, 2020, 7, 3599-3607.	2.3	11
11	Visible light-promoted reactions with diazo compounds: a mild and practical strategy towards free carbene intermediates. Chemical Society Reviews, 2020, 49, 6833-6847.	18.7	261
12	Blue light-promoted N–H insertion of amides, isatins, sulfonamides and imides into aryldiazoacetates: Synthesis of unnatural α-aryl amino acid derivatives. Tetrahedron, 2020, 76, 131316.	1.0	21
13	Nonlinear Biosynthetic Assembly of Alpiniamide by a Hybrid <i>cis</i> / <i>trans</i> -AT PKS-NRPS. ACS Chemical Biology, 2020, 15, 1067-1077.	1.6	13
14	Room Temperature Coupling of Aryldiazoacetates with Boronic Acids Enhanced by Blue Light Irradiation. Chemistry - A European Journal, 2020, 26, 5648-5653.	1.7	31
15	Preparation of Organic Nitrates from Aryldiazoacetates and Fe(NO ₃) ₃ A·9H ₂ O. Organic Letters, 2019, 21, 6909-6913.	2.4	22
16	RuCl ₃ / PPh ₃ ―Catalyzed Direct Conversion of Isoxazolâ€5â€ones to 2,3â€Disubstituted Pyridines. ChemistrySelect, 2019, 4, 3360-3365.	0.7	17
17	General Platform for the Conversion of Isoxazolâ€5â€ones to 3,5â€Disubstituted Isoxazoles via Nucleophilic Substitutions and Palladium Catalyzed Crossâ€Coupling Strategies. European Journal of Organic Chemistry, 2019, 2019, 3022-3034.	1.2	16
18	Unusual mechanisms in Claisen rearrangements: an ionic fragmentation leading to a <i>meta</i> selective rearrangement. Chemical Science, 2018, 9, 4124-4131.	3.7	28

#	Article	lF	CITATIONS
19	General Protocol to Obtain Dâ€Glucosamine from Biomass Residues: Shrimp Shells, Cicada Sloughs and Cockroaches. Global Challenges, 2018, 2, 1800046.	1.8	20
20	Conjugation of antifungal benzoic acid derivatives as a path for detoxification in Penicillium brasilianum, an endophyte from Melia azedarach. Bioorganic Chemistry, 2018, 81, 367-372.	2.0	7
21	Isoxazol-5-ones as Strategic Building Blocks in Organic Synthesis. Synthesis, 2018, 50, 2473-2489.	1.2	31
22	Blue light-promoted photolysis of aryldiazoacetates. Chemical Science, 2018, 9, 5112-5118.	3.7	258
23	An Aminocatalyzed Stereoselective Strategy for the Formal αâ€Propargylation of Ketones. Chemistry - A European Journal, 2017, 23, 9716-9720.	1.7	33
24	Rhodium- and Non-Metal-Catalyzed Approaches for the Conversion of Isoxazol-5-ones to 2,3-Dihydro-6 <i>H</i> -1,3-oxazin-6-ones. Organic Letters, 2017, 19, 5158-5161.	2.4	32
25	An Aminocatalyzed Michael Addition/Iron-Mediated Decarboxylative Cyclization Sequence for the Preparation of 2,3,4,6-Tetrasubstituted Pyridines: Scope and Mechanistic Insights. Journal of Organic Chemistry, 2017, 82, 10319-10330.	1.7	32
26	Organic Synthesis Enabled by Light-Irradiation of EDA Complexes: Theoretical Background and Synthetic Applications. ACS Catalysis, 2016, 6, 1389-1407.	5.5	504
27	Enantioselective Organocatalytic Alkylation of Aldehydes and Enals Driven by the Direct Photoexcitation of Enamines. Journal of the American Chemical Society, 2015, 137, 6120-6123.	6.6	251
28	Michael Addition of Soft Carbon Nucleophiles to Alkylidene Isoxazol-5-ones: A Divergent Entry to \hat{I}^2 -Branched Carbonyl Compounds. Organic Letters, 2015, 17, 2490-2493.	2.4	42
29	Xâ€Ray Characterization of an Electron Donor–Acceptor Complex that Drives the Photochemical Alkylation of Indoles. Angewandte Chemie - International Edition, 2015, 54, 1485-1489.	7.2	183
30	Photochemical activity of a key donor–acceptor complex can drive stereoselective catalytic α-alkylation of aldehydes. Nature Chemistry, 2013, 5, 750-756.	6.6	530
31	When asymmetric aminocatalysis meets the vinylogy principle. Chemical Communications, 2013, 49, 4869.	2.2	233
32	Synthesis of Functionalized Chromenes and Benzofurans from Aryloxy Propargyl Malonates. Israel Journal of Chemistry, 2013, 53, 915-922.	1.0	5
33	Dual Nucleophilic/Electrophilic Capture of In Situ Generated Iminium Ethers: Towards the Synthesis of Functionalized Amide Building Blocks. Chemistry - A European Journal, 2012, 18, 16292-16296.	1.7	33
34	Intramolecular Redoxâ€Triggered CH Functionalization. Angewandte Chemie - International Edition, 2012, 51, 1950-1953.	7.2	173
35	Formation of cinnoline derivatives by a gold(I)-catalyzed hydroarylation of N-propargyl-N′-arylhydrazines. Journal of Organometallic Chemistry, 2011, 696, 37-41.	0.8	42
36	Silver Carbonate. Synlett, 2011, 2011, 3053-3054.	1.0	0

#	Article	IF	CITATIONS
37	Hydroalkylation of Alkynyl Ethers via a Gold(I)-Catalyzed 1,5-Hydride Shift/Cyclization Sequence. Journal of the American Chemical Society, 2010, 132, 3543-3552.	6.6	145
38	Unusual Approach to Branched 3-Alkynylamides and to $1,5$ -Dihydropyrrol- 2 -ones. Organic Letters, $2010,$ $12,416$ - $419.$	2.4	38
39	Synthesis of Functionalized Oxazolones by a Sequence of Cu(II)- and Au(I)-Catalyzed Transformations. Organic Letters, 2008, 10, 925-928.	2.4	134
40	SYNERGISMS BETWEEN METAL AND PHOTOREDOX CATALYSIS: DECONVOLUTING COMPLEX SYSTEMS. Quimica Nova, 0 , , .	0.3	1