Igor D Jurberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2937791/publications.pdf Version: 2024-02-01

ICOD D HIDBEDC

#	Article	IF	CITATIONS
1	Photochemical activity of a key donor–acceptor complex can drive stereoselective catalytic α-alkylation of aldehydes. Nature Chemistry, 2013, 5, 750-756.	6.6	530
2	Organic Synthesis Enabled by Light-Irradiation of EDA Complexes: Theoretical Background and Synthetic Applications. ACS Catalysis, 2016, 6, 1389-1407.	5.5	504
3	Visible light-promoted reactions with diazo compounds: a mild and practical strategy towards free carbene intermediates. Chemical Society Reviews, 2020, 49, 6833-6847.	18.7	261
4	Blue light-promoted photolysis of aryldiazoacetates. Chemical Science, 2018, 9, 5112-5118.	3.7	258
5	Enantioselective Organocatalytic Alkylation of Aldehydes and Enals Driven by the Direct Photoexcitation of Enamines. Journal of the American Chemical Society, 2015, 137, 6120-6123.	6.6	251
6	When asymmetric aminocatalysis meets the vinylogy principle. Chemical Communications, 2013, 49, 4869.	2.2	233
7	Xâ€Ray Characterization of an Electron Donor–Acceptor Complex that Drives the Photochemical Alkylation of Indoles. Angewandte Chemie - International Edition, 2015, 54, 1485-1489.	7.2	183
8	Intramolecular Redoxâ€Triggered CH Functionalization. Angewandte Chemie - International Edition, 2012, 51, 1950-1953.	7.2	173
9	Hydroalkylation of Alkynyl Ethers via a Gold(I)-Catalyzed 1,5-Hydride Shift/Cyclization Sequence. Journal of the American Chemical Society, 2010, 132, 3543-3552.	6.6	145
10	Synthesis of Functionalized Oxazolones by a Sequence of Cu(II)- and Au(I)-Catalyzed Transformations. Organic Letters, 2008, 10, 925-928.	2.4	134
11	Blue Lightâ€Promoted Nâ^'H Insertion of Carbazoles, Pyrazoles and 1,2,3â€Triazoles into Aryldiazoacetates. Advanced Synthesis and Catalysis, 2020, 362, 1106-1111.	2.1	60
12	Formation of cinnoline derivatives by a gold(I)-catalyzed hydroarylation of N-propargyl-N′-arylhydrazines. Journal of Organometallic Chemistry, 2011, 696, 37-41.	0.8	42
13	Michael Addition of Soft Carbon Nucleophiles to Alkylidene Isoxazol-5-ones: A Divergent Entry to β-Branched Carbonyl Compounds. Organic Letters, 2015, 17, 2490-2493.	2.4	42
14	Unusual Approach to Branched 3-Alkynylamides and to 1,5-Dihydropyrrol-2-ones. Organic Letters, 2010, 12, 416-419.	2.4	38
15	Dual Nucleophilic/Electrophilic Capture of In Situ Generated Iminium Ethers: Towards the Synthesis of Functionalized Amide Building Blocks. Chemistry - A European Journal, 2012, 18, 16292-16296.	1.7	33
16	An Aminocatalyzed Stereoselective Strategy for the Formal αâ€Propargylation of Ketones. Chemistry - A European Journal, 2017, 23, 9716-9720.	1.7	33
17	Rhodium- and Non-Metal-Catalyzed Approaches for the Conversion of Isoxazol-5-ones to 2,3-Dihydro-6 <i>H</i> -1,3-oxazin-6-ones. Organic Letters, 2017, 19, 5158-5161.	2.4	32
18	An Aminocatalyzed Michael Addition/Iron-Mediated Decarboxylative Cyclization Sequence for the Preparation of 2,3,4,6-Tetrasubstituted Pyridines: Scope and Mechanistic Insights. Journal of Organic Chemistry, 2017, 82, 10319-10330.	1.7	32

IGOR D JURBERG

#	Article	IF	CITATIONS
19	Isoxazol-5-ones as Strategic Building Blocks in Organic Synthesis. Synthesis, 2018, 50, 2473-2489.	1.2	31
20	Room Temperature Coupling of Aryldiazoacetates with Boronic Acids Enhanced by Blue Light Irradiation. Chemistry - A European Journal, 2020, 26, 5648-5653.	1.7	31
21	The chemistry and biology of guanidine secondary metabolites. Natural Product Reports, 2021, 38, 586-667.	5.2	30
22	Unusual mechanisms in Claisen rearrangements: an ionic fragmentation leading to a <i>meta</i> -selective rearrangement. Chemical Science, 2018, 9, 4124-4131.	3.7	28
23	A Selective C–C Bond Cleavage Strategy Promoted by Visible Light. Organic Letters, 2021, 23, 8916-8920.	2.4	23
24	Preparation of Organic Nitrates from Aryldiazoacetates and Fe(NO ₃) ₃ ·9H ₂ O. Organic Letters, 2019, 21, 6909-6913.	2.4	22
25	Visible-Light-Mediated Strategies to Assemble Alkyl 2-Carboxylate-2,3,3-Trisubstituted β-Lactams and 5-Alkoxy-2,2,4-Trisubstituted Furan-3(2H)-ones Using Aryldiazoacetates and Aryldiazoketones. Organic Letters, 2021, 23, 9292-9296.	2.4	22
26	Blue light-promoted N–H insertion of amides, isatins, sulfonamides and imides into aryldiazoacetates: Synthesis of unnatural α-aryl amino acid derivatives. Tetrahedron, 2020, 76, 131316.	1.0	21
27	General Protocol to Obtain Dâ€Glucosamine from Biomass Residues: Shrimp Shells, Cicada Sloughs and Cockroaches. Global Challenges, 2018, 2, 1800046.	1.8	20
28	A visible light-mediated three-component strategy based on the ring-opening of cyclic ethers with aryldiazoacetates and nucleophiles. Organic Chemistry Frontiers, 2022, 9, 1321-1326.	2.3	19
29	RuCl ₃ / PPh ₃ ―Catalyzed Direct Conversion of Isoxazolâ€5â€ones to 2,3â€Disubstituted Pyridines. ChemistrySelect, 2019, 4, 3360-3365.	0.7	17
30	General Platform for the Conversion of Isoxazolâ€5â€ones to 3,5â€Disubstituted Isoxazoles via Nucleophilic Substitutions and Palladium Catalyzed Crossâ€Coupling Strategies. European Journal of Organic Chemistry, 2019, 2019, 3022-3034.	1.2	16
31	Activating Imides with Triflic Acid: A General Intramolecular Aldol Condensation Strategy Toward Indolizidine, Quinolizidine, and Valmerin Alkaloids. Organic Letters, 2020, 22, 239-243.	2.4	15
32	Nonlinear Biosynthetic Assembly of Alpiniamide by a Hybrid <i>cis</i> / <i>trans</i> -AT PKS-NRPS. ACS Chemical Biology, 2020, 15, 1067-1077.	1.6	13
33	Visible-Light-Mediated Strategies for the Preparation of Oxime Ethers Derived from O–H Insertions of Oximes into Aryldiazoacetates. Journal of Organic Chemistry, 2021, 86, 17528-17532.	1.7	13
34	Diastereodivergent aminocatalyzed spirocyclization strategies using 4-alkylideneisoxazol-5-ones and methyl vinyl ketones. Organic Chemistry Frontiers, 2020, 7, 3599-3607.	2.3	11
35	Conjugation of antifungal benzoic acid derivatives as a path for detoxification in Penicillium brasilianum, an endophyte from Melia azedarach. Bioorganic Chemistry, 2018, 81, 367-372.	2.0	7
36	Cyclization Strategies Using Imide Derivatives for the Synthesis of Polycyclic Nitrogen ontaining Compounds. European Journal of Organic Chemistry, 2022, 2022, .	1.2	6

IGOR D JURBERG

#	Article	IF	CITATIONS
37	Synthesis of Functionalized Chromenes and Benzofurans from Aryloxy Propargyl Malonates. Israel Journal of Chemistry, 2013, 53, 915-922.	1.0	5
38	H–F bond insertions into α-diazo carbonyl compounds. Organic and Biomolecular Chemistry, 2022, 20, 6178-6182.	1.5	2
39	SYNERGISMS BETWEEN METAL AND PHOTOREDOX CATALYSIS: DECONVOLUTING COMPLEX SYSTEMS. Quimica Nova, 0, , .	0.3	1
40	Silver Carbonate. Synlett, 2011, 2011, 3053-3054.	1.0	0