Anna Tutusaus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2937640/publications.pdf

Version: 2024-02-01

16 papers	567 citations	12 h-index	996975 15 g-index
16	16	16	1112 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Hepatocellular Carcinoma: Molecular Pathogenesis and Therapeutic Advances. Cancers, 2022, 14, 621.	3.7	34
2	Growth Arrest-Specific Factor 6 (GAS6) Is Increased in COVID-19 Patients and Predicts Clinical Outcome. Biomedicines, 2021, 9, 335.	3.2	24
3	Antioxidants Threaten Multikinase Inhibitor Efficacy against Liver Cancer by Blocking Mitochondrial Reactive Oxygen Species. Antioxidants, 2021, 10, 1336.	5.1	11
4	A Functional Role of GAS6/TAM in Nonalcoholic Steatohepatitis Progression Implicates AXL as Therapeutic Target. Cellular and Molecular Gastroenterology and Hepatology, 2020, 9, 349-368.	4.5	39
5	Mitochondrial Glutathione: Recent Insights and Role in Disease. Antioxidants, 2020, 9, 909.	5.1	89
6	Regorafenib Alteration of the BCL-xL/MCL-1 Ratio Provides a Therapeutic Opportunity for BH3-Mimetics in Hepatocellular Carcinoma Models. Cancers, 2020, 12, 332.	3.7	13
7	Role of Vitamin K-Dependent Factors Protein S and GAS6 and TAM Receptors in SARS-CoV-2 Infection and COVID-19-Associated Immunothrombosis. Cells, 2020, 9, 2186.	4.1	34
8	AXL inhibition prevents NAFLD progression in mice with soluble AXL as marker of the NAFLD to NASH transition. Journal of Hepatology, 2020, 73, S655-S656.	3.7	O
9	Antiapoptotic BCL-2 proteins determine sorafenib/regorafenib resistance and BH3-mimetic efficacy in hepatocellular carcinoma. Oncotarget, 2018, 9, 16701-16717.	1.8	44
10	Wnt9a deficiency discloses a repressive role of Tcf7l2 on endocrine differentiation in the embryonic pancreas. Scientific Reports, 2016, 6, 19223.	3.3	8
11	Cysteine cathepsins control hepatic NF-κB-dependent inflammation via sirtuin-1 regulation. Cell Death and Disease, 2016, 7, e2464-e2464.	6.3	42
12	Genetic and clinical data reinforce the role of GAS6 and TAM receptors in liver fibrosis. Journal of Hepatology, 2016, 64, 983-984.	3.7	7
13	Targeting glucosylceramide synthase upregulation reverts sorafenib resistance in experimental hepatocellular carcinoma. Oncotarget, 2016, 7, 8253-8267.	1.8	40
14	Angiogenin Secretion From Hepatoma Cells Activates Hepatic Stellate Cells To Amplify A Self-Sustained Cycle Promoting Liver Cancer. Scientific Reports, 2015, 5, 7916.	3.3	42
15	Gas6/Axl pathway is activated in chronic liver disease and its targeting reduces fibrosis via hepatic stellate cell inactivation. Journal of Hepatology, 2015, 63, 670-678.	3.7	104
16	Neurogenin3 Cooperates with Foxa2 to Autoactivate Its Own Expression. Journal of Biological Chemistry, 2013, 288, 11705-11717.	3.4	36