Hermann Kaindl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2937517/publications.pdf

Version: 2024-02-01

144 1,115 12 22 g-index

147 147 147 147 482

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	A User Study to Evaluate the Customization of Automatically Generated GUIs. Lecture Notes in Networks and Systems, 2022, , 683-690.	0.7	1
2	Verification of Consistency Between Process Models, Object Life Cycles, and Context-Dependent Semantic Specifications. IEEE Transactions on Software Engineering, 2022, 48, 4041-4059.	5.6	0
3	Enhancing Product Comparison through Automated Similarity Matching. , 2022, , .		O
4	High-Level Interaction Design with Discourse Models for Automated Web GUI Generation. Lecture Notes in Computer Science, 2021, , 542-546.	1.3	0
5	ModelGenGUIs – High-level Interaction Design with Discourse Models for Automated GUI Generation. , 2021, , .		1
6	A Task Execution Scheme for Dew Computing with State-of-the-Art Smartphones. Electronics (Switzerland), 2021, 10, 2006.	3.1	14
7	Using Binary Strings for Comparing Products from Software-intensive Systems Product Lines. , 2021, , .		4
8	A Probabilistic Model of Taking-Over Control from Semi-autonomous Vehicles. Advances in Intelligent Systems and Computing, 2021, , 332-337.	0.6	0
9	Requirements Reuse for Exploring Stakeholder Needs. , 2021, , .		O
10	Human-Machine Interaction. Advances in Intelligent Systems and Computing, 2020, , 428-433.	0.6	1
11	Towards an Extended Requirements Problem Formulation for Superintelligence Safety. , 2020, , .		2
12	Towards Probabilistic Analysis of Human-System Integration in Automated Driving. Advances in Intelligent Systems and Computing, 2020, , 9-14.	0.6	8
13	Estimating Problem Instance Difficulty. , 2020, , .		1
14	Software reuse and mass personalization. , 2020, , .		0
15	Software Reuse for Mass Customization. , 2019, , .		O
16	Software Reuse and Reusability Based on Requirements: Feature Modelling vs. Case-Based Reasoning. , 2019, , .		0
17	Specifying Requirements through Interaction Design. , 2019, , .		O
18	An Experimental Evaluation of Design Space Exploration of Hardware/Software Interfaces., 2019,,.		1

#	Article	IF	CITATIONS
19	Efficiently Finding Optimal Solutions to Easy Problems in Design Space Exploration: A^* Tie-breaking., 2019,,.		1
20	Formal Verification of Cyber-physical Feature Coordination with Minimalist Qualitative Models. Communications in Computer and Information Science, 2019, , 261-287.	0.5	0
21	On the development of consistent user interfaces (extended abstract). , 2018, , .		3
22	Software reuse and mass customisation. , 2018, , .		0
23	Systematic top-down design of cyber-physical models with integrated validation and formal verification. , 2018, , .		7
24	Software Reuse and Reusability Based on Requirements: Product Lines, Cases and Feature-Similarity Models. , 2018, , .		2
25	Combining Design-time Generation of Web-pages with Responsive Design for Improving Low-vision Accessibility. , $2018, , .$		8
26	Taming and optimizing feature interaction in software-intensive automotive systems. , 2018, , .		2
27	Towards a Common Ontology of Safety Risk Concepts for Railway Vehicles and Signaling. Lecture Notes in Computer Science, 2018, , 297-310.	1.3	0
28	Product Propagation: A Backup Rule Better Than Minimaxing?. IEEE Transactions on Games, 2017, 9, 109-122.	1.4	1
29	High-level interaction design for automated GUI generation and customization. , 2017, , .		0
30	Product Line Strategies and Feature Reuse. , 2017, , .		0
31	Semantic task specification in business process context., 2017,,.		3
32	Towards a Common Safety Ontology for Automobiles and Railway Vehicles. , 2016, , .		5
33	Verification of Business Processes Against Business Rules Using Object Life Cycles. Advances in Intelligent Systems and Computing, 2016, , 589-598.	0.6	1
34	Adding custom widgets to model-driven GUI generation. , 2016, , .		8
35	Minimalist Qualitative Models for Model Checking Cyber-Physical Feature Coordination. , 2016, , .		6
36	Optimization of feature interactions for automotive combustion engines. , 2016, , .		8

#	Article	IF	Citations
37	Aligning Architectures of Business and Software: Software Driven by Business Process Models and Its User Interface. , 2016, , .		4
38	Reuse vs. Reusability of Software Supporting Business Processes. Lecture Notes in Computer Science, 2016, , 138-145.	1.3	1
39	A Core Ontology of Safety Risk Concepts. Lecture Notes in Computer Science, 2016, , 165-180.	1.3	2
40	Semantic Service Specification for V& amp; V of Service Composition and Business Processes. , 2015, , .		7
41	Strategies for Automated GUI Tailoring for Multiple Devices. , 2015, , .		13
42	Automated refinement of business processes through model transformations specifying business rules. , 2015, , .		3
43	Model transformation rules for customization of multi-device graphical user interfaces., 2015,,.		7
44	Towards reuse in safety risk analysis based on product line requirements. , 2015, , .		2
45	Consistently Formalizing a Business Process and its Properties for Verification: A Case Study. Lecture Notes in Business Information Processing, 2015, , 126-140.	1.0	3
46	Alternative interaction design patterns for automated GUI generation from Discourse-based Communication Models. , 2014 , , .		1
47	Duality of task- and discourse-based interaction design for GUI generation. , 2014, , .		6
48	A user study on tailoring GUIs for smartphones. , 2014, , .		2
49	Towards Fully Declarative High-Level Interaction Models: An Approach Facilitating Automated GUI Generation. , 2014, , .		3
50	A process for facilitating interaction design through automated GUI generation. , 2014, , .		11
51	Using similarity metrics for mining variability from software repositories. , 2014, , .		2
52	An Iterative and Incremental Process for Interaction Design through Automated GUI Generation. Lecture Notes in Computer Science, 2014, , 373-384.	1.3	3
53	A Feature-Similarity Model for Product Line Engineering. Lecture Notes in Computer Science, 2014, , 34-41.	1.3	7
54	Semi-automatic generation of recommendation processes and their GUIs., 2013,,.		2

#	Article	IF	CITATIONS
55	Expectation-Based Command Recognition Off the Shelf: Publicly Reproducible Experiments with Speech Input. , $2013, \ldots$		O
56	Self-Representation for Self-Configuration and Monitoring in Agent-Based Flexible Automation Systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2013, 43, 164-175.	9.3	22
57	Model-Based Transition from Requirements to High-Level Software Design. , 2013, , .		0
58	Software Reuse Based on Business Processes and Requirements. , 2013, , .		2
59	Connecting Interaction Models and Application Logic for Model-Driven Generation of Web-Based Graphical User Interfaces. , 2013, , .		8
60	Tool support for automated multi-device GUI generation from discourse-based communication models. , 2013, , .		28
61	Using a Mediator to Handle Undesired Feature Interaction of Automated Driving. , 2013, , .		6
62	Model-Based Transition from Requirements to High-Level Software Design. Lecture Notes in Computer Science, 2013, , 367-369.	1.3	1
63	A User Study with GUIs Tailored for Smartphones. Lecture Notes in Computer Science, 2013, , 505-512.	1.3	10
64	Generating Models of Recommendation Processes out of Annotated Ontologies. Human-computer Interaction Series, 2013, , 25-42.	0.6	0
65	Semi-automatic generation of multimodal user interfaces for dialogue-based interactive systems. , 2012, , .		2
66	A Case Study of Remote Interdisciplinary Designing through Video Prototypes., 2012,,.		2
67	A transformation engine for model-driven UI generation. , 2012, , .		14
68	Product Line Requirements Reuse Based on Variability Management. , 2012, , .		1
69	Robot-Supported Cooperative Work: A Shared-Shopping Scenario. , 2011, , .		9
70	A knowledge management perspective of requirements engineering. , 2011, , .		21
71	Engineering Requirements in Product Lines. Incose International Symposium, 2011, 21, 3139-3215.	0.6	1
72	Scenarioâ€based requirements engineering facilitating interaction design. Incose International Symposium, 2011, 21, 2888-2921.	0.6	0

#	Article	IF	CITATIONS
73	Automated WIMP-UI behavior generation: Parallelism and granularity of communication units., 2011,,.		6
74	Automated generation of device-specific WIMP Uls. , 2011, , .		15
75	Optimized GUI Generation for Small Screens. Studies in Computational Intelligence, 2011, , 107-122.	0.9	26
76	Scenario-Based Requirements Engineering Facilitating Interaction Design. Lecture Notes in Computer Science, 2011, , 708-709.	1.3	1
77	Uls Automatically Optimized for Your Smartphone. Lecture Notes in Computer Science, 2011, , 712-713.	1.3	О
78	On confusion between requirements and their representations. Requirements Engineering, 2010, 15, 307-311.	3.1	27
79	Semi-automatically Configured Fission for Multimodal User Interfaces. , 2010, , .		1
80	Semi-Automatically Generated High-Level Fusion for Multimodal User Interfaces., 2010,,.		1
81	Model a discourse and transform it to your user interface. , 2010, , .		1
82	Case-based Reuse with Partial Requirements Specifications. , 2010, , .		21
83	Towards Self-Managed Systems Aware of Economic Value. , 2010, , .		2
84	An Approach to Method-Tool Coupling for Software Development. , 2010, , .		5
85	Semi-automatic user interface generation considering pointing granularity. , 2009, , .		7
86	Generating content presentation according to purpose. , 2009, , .		4
87	A Unification of the Essence of Goal-Oriented Requirements Engineering. , 2009, , .		2
88	An analysis of decision quality of minimaxing vs. product propagation., 2009,,.		2
89	Long-Term Perspective of Agile Methods. , 2009, , .		1
90	Iterative Requirements Engineering and Architecting in Systems Engineering. , 2009, , .		6

#	Article	IF	CITATIONS
91	Fully automatic user interface generation from discourse models., 2009,,.		21
92	Support for Programming Embedded Software with Dynamically Typed Languages. , 2009, , .		1
93	An automation agent architecture with a reflective world model in manufacturing systems. , 2009, , .		28
94	Fully automatic generation of web user interfaces for multiple devices from a high-level model based on communicative acts. International Journal of Web Engineering and Technology, 2009, 5, 135.	0.2	3
95	Model a Discourse and Transform It to Your User Interface. Lecture Notes in Computer Science, 2009, , 948-949.	1.3	2
96	Using parameters and discriminants for product line requirements. Systems Engineering, 2008, 11, 61-80.	2.7	29
97	Generating an Abstract User Interface from a Discourse Model Inspired by Human Communication. , 2008, , .		17
98	Reusing Terminology for Requirements Specifications from WordNet. , 2008, , .		3
99	An Integration of Requirements and User Interface Specifications. , 2008, , .		18
100	Requirements vs. Software Design: An Explanation Based on the Distinction between Concepts and Their Representations. , 2008, , .		1
101	Can We Transform Requirements into Architecture?. , 2008, , .		8
102	High-Level Modeling of Software-Management Interactions and Tasks for Autonomic Computing. , 2008, , .		0
103	Modeling of interaction design by end users through discourse modeling. , 2008, , .		14
104	Multimodal communication involving movements of a robot. , 2008, , .		3
105	How to Combine Requirements Engineering and Interaction Design?., 2008,,.		5
106	Fully-automatic generation of user interfaces for multiple devices from a high-level model based on communicative acts., 2007,,.		15
107	Gradual transition towards autonomic software systems based on high-level communication specification., 2007,,.		3
108	UI Prototyping for Multiple Devices Through Specifying Interaction Design. Lecture Notes in Computer Science, 2007, , 136-149.	1.3	7

#	Article	IF	CITATIONS
109	Transforming Discourse Models to Structural User Interface Models. Lecture Notes in Computer Science, 2007, , 77-88.	1.3	14
110	How to Combine Requirements and Interaction Design Through Usage Scenarios. Lecture Notes in Computer Science, 2007, , 706-707.	1.3	1
111	A discourse model for interaction design based on theories of human communication. , 2006, , .		45
112	2.3.2 Verification of Selection from Product Line Requirements. Incose International Symposium, 2005, 15, 306-315.	0.6	3
113	Is object-oriented requirements engineering of interest?. Requirements Engineering, 2005, 10, 81-84.	3.1	24
114	A scenario-based approach for requirements engineering: Experience in a telecommunication software development project. Systems Engineering, 2005, 8, 197-210.	2.7	18
115	Using communicative acts in high-level specifications of user interfaces for their automated synthesis. , 2005, , .		8
116	Coupling and cohesion metrics for knowledge-based systems using frames and rules. ACM Transactions on Software Engineering and Methodology, 2004, 13, 332-358.	6.0	35
117	3 Panel: How Do Requirements Relate to Objects?. Incose International Symposium, 2004, 14, 878-888.	0.6	0
118	6.1.2 Interactive Metamodelâ€Compliance Checking of Requirements in a Semiformal Representation. Incose International Symposium, 2004, 14, 1154-1167.	0.6	1
119	Requirements Engineering and Technology Transfer: Obstacles, Incentives and Improvement Agenda. Requirements Engineering, 2002, 7, 113-123.	3.1	107
120	From Usage Scenarios to User Interface Elements in a Few Steps. , 2002, , 91-102.		6
121	Using hypermedia in requirements engineering practice. New Review of Hypermedia and Multimedia, 2001, 7, 185-205.	1.1	2
122	Methods and modeling., 2001,,.		2
123	An Interactive Guide Through a Defined Modelling Process. , 2001, , 107-123.		4
124	How difficult is the transition from OOA to OOD? (panel session). , 2000, , .		1
125	ooSEM (poster session). , 2000, , .		1
126	Semiautomatic generation of glossary links. , 1999, , .		15

#	Article	IF	CITATIONS
127	Reusing single system requirements from application family requirements. , 1999, , .		38
128	Symbolic modeling in practice. Communications of the ACM, 1999, 42, 28-30.	4.5	13
129	Difficulties in the transition from OO analysis to design. IEEE Software, 1999, 16, 94-102.	1.8	52
130	Benefits of using multivalued functions for minimaxing. Artificial Intelligence, 1998, 99, 187-208.	5.8	11
131	Combining Goals and Functional Requirements in a Scenario-based Design Process. , 1998, , 101-121.		6
132	A practical approach to combining requirements definition and objectâ€oriented analysis. Annals of Software Engineering, 1997, 3, 319-343.	0.5	38
133	Using hypertext for semiformal representation in requirements engineering practice. New Review of Hypermedia and Multimedia, 1996, 2, 149-173.	1.1	9
134	An integration of scenarios with their purposes in task modeling. , 1995, , .		10
135	Artificial intelligence for object-oriented software engineering. , 1994, , .		0
136	Editorial: object-oriented approaches in artificial intelligence and human-computer interaction. International Journal of Human Computer Studies, 1994, 41, 1-3.	5.6	0
137	Types and inheritance in hypertext. International Journal of Human Computer Studies, 1994, 41, 223-241.	5.6	6
138	Comparing object-oriented analysis with knowledge acquisition. ACM SIGPLAN OOPS Messenger, 1994, 5, 1-5.	0.1	1
139	Knowledge acquisition using hypertext. Expert Systems With Applications, 1992, 5, 369-375.	7.6	4
140	HIS. SIGWEB Newsletter: the Newsletter of ACM's Special Interest Group on Hypertext and Hypermedia, 1992, 1, 1-7.	0.6	2
141	Hypertext and structured object representation. , 1991, , .		19
142	Problemlösen durch heuristische Suche in der Artificial Intelligence. , 1989, , .		11
143	Portability of software. ACM SIGPLAN Notices, 1988, 23, 59-68.	0.2	6
144	Selective Search Versus Brute Force. ICGA Journal, 1986, 9, 140-145.	0.3	1