Chao Han

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2937116/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Simply Coupling TiO ₂ Nanospheres with Cu ₂ O Particles to Boost the Photocatalytic Hydrogen Evolution through p–n Heterojunctionâ€Induced Charge Transfer. Energy Technology, 2022, 10, 2100259.	1.8	4
2	Boron leaching: Creating vacancy-rich Ni for enhanced hydrogen evolution. Nano Research, 2022, 15, 1868-1873.	5.8	18
3	2D boron nanosheet architectonics: opening new territories by smart functionalization. Journal of Materials Chemistry A, 2022, 10, 2736-2750.	5.2	12
4	Effects of carbon on electrochemical performance of red phosphorus (P) and carbon composite as anode for sodium ion batteries. Journal of Materials Science and Technology, 2021, 68, 140-146.	5.6	20
5	Multiscale architectures boosting thermoelectric performance of copper sulfide compound. Rare Metals, 2021, 40, 2017-2025.	3.6	33
6	A P3-Type K _{1/2} Mn _{5/6} Mg _{1/12} Ni _{1/12} O ₂ Cathode Material for Potassium-Ion Batteries with High Structural Reversibility Secured by the Mg–Ni Pinning Effect. ACS Applied Materials & Interfaces, 2021, 13, 28369-28377.	4.0	29
7	Recent Progress on Two-Dimensional Carbon Materials for Emerging Post-Lithium (Na+, K+, Zn2+) Hybrid Supercapacitors. Polymers, 2021, 13, 2137.	2.0	19
8	Strategies for boosting carbon electrocatalysts for the oxygen reduction reaction in non-aqueous metal–air battery systems. Journal of Materials Chemistry A, 2021, 9, 6671-6693.	5.2	37
9	An ultrathin rechargeable solid-state zinc ion fiber battery for electronic textiles. Science Advances, 2021, 7, eabl3742.	4.7	145
10	Improving the Energy Density and Efficiency of the Linear Polymer PMMA with a Double-Bond Fluoropolymer at Elevated Temperatures. ACS Omega, 2021, 6, 35014-35022.	1.6	6
11	Stress Distortion Restraint to Boost the Sodium Ion Storage Performance of a Novel Binary Hexacyanoferrate. Advanced Energy Materials, 2020, 10, 1903006.	10.2	67
12	Electron Delocalization and Dissolutionâ€Restraint in Vanadium Oxide Superlattices to Boost Electrochemical Performance of Aqueous Zincâ€ion Batteries. Advanced Energy Materials, 2020, 10, 2001852.	10.2	125
13	Principals and strategies for constructing a highly reversible zinc metal anode in aqueous batteries. Nano Energy, 2020, 74, 104880.	8.2	225
14	A 1D/2D WO ₃ nanostructure coupled with a nanoparticulate CuO cocatalyst for enhancing solar-driven CO ₂ photoreduction: the impact of the crystal facet. Sustainable Energy and Fuels, 2020, 4, 2593-2603.	2.5	29
15	Three-Dimensional Electronic Network Assisted by TiN Conductive Pillars and Chemical Adsorption to Boost the Electrochemical Performance of Red Phosphorus. ACS Nano, 2020, 14, 4609-4617.	7.3	31
16	Cuprous ion (Cu+) doping induced surface/interface engineering for enhancing the CO2 photoreduction capability of W18O49 nanowires. Journal of Colloid and Interface Science, 2020, 572, 306-317.	5.0	50
17	Achieving solar-to-hydrogen evolution promotion using TiO2 nanoparticles and an unanchored Cu co-catalyst. Materials Research Bulletin, 2020, 129, 110891.	2.7	15
18	Catalytic Activity Boosting of Nickel Sulfide toward Oxygen Evolution Reaction via Confined Overdoping Engineering. ACS Applied Energy Materials, 2019, 2, 5363-5372.	2.5	48

Chao Han

#	Article	IF	CITATIONS
19	Design strategies for developing non-precious metal based bi-functional catalysts for alkaline electrolyte based zinc–air batteries. Materials Horizons, 2019, 6, 1812-1827.	6.4	79
20	Chemical Properties, Structural Properties, and Energy Storage Applications of Prussian Blue Analogues. Small, 2019, 15, e1900470.	5.2	226
21	Free-Standing Three-Dimensional CuCo ₂ S ₄ Nanosheet Array with High Catalytic Activity as an Efficient Oxygen Electrode for Lithium–Oxygen Batteries. ACS Applied Materials & Interfaces, 2019, 11, 3834-3842.	4.0	75
22	High-Performance PbTe Thermoelectric Films by Scalable and Low-Cost Printing. ACS Energy Letters, 2018, 3, 818-822.	8.8	53
23	Remarkable Enhancement in Sodiumâ€lon Kinetics of NaFe ₂ (CN) ₆ by Chemical Bonding with Graphene. Small Methods, 2018, 2, 1700346.	4.6	40
24	Enhanced thermoelectric performance through synergy of resonance levels and valence band convergence <i>via</i> Q/In (Q = Mg, Ag, Bi) co-doping. Journal of Materials Chemistry A, 2018, 6, 2507-2516.	5.2	34
25	First Observation of Low-Temperature Magnetic Transition in CuAgSe. Journal of Physical Chemistry C, 2018, 122, 19139-19145.	1.5	4
26	Application Prospects of Thermoelectric Technique. Research & Development in Material Science, 2018, 3, .	0.1	0
27	Commercial Prospects of Existing Cathode Materials for Sodium Ion Storage. Advanced Energy Materials, 2017, 7, 1700274.	10.2	118
28	Thermoelectric Enhancement of Different Kinds of Metal Chalcogenides. Advanced Energy Materials, 2016, 6, 1600498.	10.2	145
29	Graphiteâ€Nanoplateâ€Coated Bi ₂ S ₃ Composite with Highâ€Volume Energy Density and Excellent Cycle Life for Roomâ€Temperature Sodium–Sulfide Batteries. Chemistry - A European Journal, 2016, 22, 590-597.	1.7	48
30	Metal Chalcogenides: Thermoelectric Enhancement of Different Kinds of Metal Chalcogenides (Adv.) Tj ETQq0 0 () rgBT /Ov F0.2	verlock 10 Tf
31	Ambient Aqueous Growth of Cu ₂ Te Nanostructures with Excellent Electrocatalytic Activity toward Sulfide Redox Shuttles. Advanced Science, 2016, 3, 1500350.	5.6	30
32	High-performance and flexible thermoelectric films by screen printing solution-processed nanoplate crystals. Scientific Reports, 2016, 6, 33135.	1.6	141
33	Ambient synthesis of a multifunctional 1D/2D hierarchical Ag–Ag ₂ S nanowire/nanosheet heterostructure with diverse applications. CrystEngComm, 2016, 18, 930-937.	1.3	38
34	Effects of nanostructure on clean energy: big solutions gained from small features. Science Bulletin, 2015, 60, 2083-2090.	4.3	35
35	Robust scalable synthesis of surfactant-free thermoelectric metal chalcogenide nanostructures. Nano Energy, 2015, 15, 193-204.	8.2	53
36	Boosting the efficiency of quantum dot sensitized solar cells up to 7.11% through simultaneous engineering of photocathode and photoanode. Nano Energy, 2015, 13, 609-619.	8.2	72

Снао Нам

#	Article	IF	CITATIONS
37	Ambient Scalable Synthesis of Surfactant-Free Thermoelectric CuAgSe Nanoparticles with Reversible Metallic- <i>n-p</i> Conductivity Transition. Journal of the American Chemical Society, 2014, 136, 17626-17633.	6.6	76
38	Controlled synthesis of copper telluride nanostructures for long-cycling anodes in lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 11683.	5.2	94
39	Recent progress in thermoelectric materials. Science Bulletin, 2014, 59, 2073-2091.	1.7	113
40	Oxidation behaviors of Ni-Cr-Al superalloy foams at 1 000 °C in air. Journal of Central South University, 2013, 20, 3345-3353.	1.2	7
41	Hot corrosion behavior of Ni-xCr-6.8Al based alloys. Transactions of Nonferrous Metals Society of China, 2011, 21, 2348-2357.	1.7	8
42	Hot corrosion behavior of Ni–16Cr–xAl based alloys in mixture of Na2SO4–NaCl at 600 °C. Transactions of Nonferrous Metals Society of China, 2011, 21, 2617-2625.	1.7	22