Guojiang Wan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2936769/publications.pdf Version: 2024-02-01

CHOHANG WAN

(

#	Article	IF	CITATIONS
1	Micro/Nano‧tructured Metal–Organic/Inorganic Hybrid Coatings on Biodegradable Zn for Osteogenic and Biocompatible Improvement. Advanced Materials Interfaces, 2022, 9, .	3.7	9
2	Osteogenic and angiogenic bioactive collagen entrapped calcium/zinc phosphates coating on biodegradable Zn for orthopedic implant applications. , 2022, 136, 212792.		15
3	Influence of Surface Roughness on Biodegradability and Cytocompatibility of High-Purity Magnesium. Materials, 2022, 15, 3991.	2.9	4
4	Chandler-Loop surveyed blood compatibility and dynamic blood triggered degradation behavior of Zn-4Cu alloy and Zn. Materials Science and Engineering C, 2021, 119, 111594.	7.3	6
5	Improved biodegradability of zinc and its alloys by sandblasting treatment. Surface and Coatings Technology, 2021, 405, 126678.	4.8	23
6	Appropriately adapted properties of hot-extruded Zn–0.5Cu–xFe alloys aimed for biodegradable guided bone regeneration membrane application. Bioactive Materials, 2021, 6, 975-989.	15.6	37
7	Heat treatment of Hexa-Methylene Diamine Tetra-Methylene Phosphonic Acid (HMDTMPA) coating on biodegradable Mg to improve corrosion resistance and bioactivity. Surface Engineering, 2021, 37, 1032-1042.	2.2	1
8	Corrosion and degradation decelerating alendronate embedded zinc phosphate hybrid coating on biodegradable Zn biomaterials. Corrosion Science, 2021, 184, 109398.	6.6	24
9	Mg ions incorporated phytic acid (PA) and zoledronic acid (ZA) of metal-organic complex coating on biodegradable magnesium for orthopedic implants application. Surface and Coatings Technology, 2021, 413, 127075.	4.8	12
10	Impact of sterilization treatments on biodegradability and cytocompatibility of zinc-based implant materials. Materials Science and Engineering C, 2021, 130, 112430.	7.3	7
11	Ultraviolet irradiation assisted liquid phase deposited titanium dioxide (TiO2)-incorporated into phytic acid coating on magnesium for slowing-down biodegradation and improving osteo-compatibility. Materials Science and Engineering C, 2020, 108, 110487.	7.3	17
12	Deposition of anti-corrosion hybrid film of hexamethylene diaminetetrakis (methylene phosphonic) Tj ETQq0 0 (Technology, 2020, 402, 126242.	0 rgBT /Ove 4.8	erlock 10 Tf 5 5
13	Polydopamine (PDA) mediated nanogranular-structured titanium dioxide (TiO2) coating on polyetheretherketone (PEEK) for oral and maxillofacial implants application. Surface and Coatings Technology, 2020, 401, 126282.	4.8	26
14	Covalentlyâ€Attached, Surfaceâ€Eroding Polymer Coatings on Magnesium Alloys for Corrosion Control and Temporally Varying Support of Cell Adhesion. Advanced Materials Interfaces, 2020, 7, 2000356.	3.7	10
15	Hydroxyquinoline/nano-graphene oxide composite coating of self-healing functionality on treated Mg alloys AZ31. Surface and Coatings Technology, 2020, 385, 125395.	4.8	20
16	Investigation of zincâ€ʿcopper alloys as potential materials for craniomaxillofacial osteosynthesis implants. Materials Science and Engineering C, 2019, 103, 109826.	7.3	70
17	Electrochemical Performance of Free tanding and Flexible Graphene and TiO ₂ Composites with Different Conductive Polymers as Electrodes for Supercapacitors. Chemistry - A European Journal, 2019, 25, 7903-7911.	3.3	26
18	Freestanding RGO—Co ₃ O ₄ —PPy Composite Films as Electrodes for Supercapacitors. Energy Technology, 2019, 7, 1800606.	3.8	25

#	Article	IF	CITATIONS
19	Hybrid scaffolds of Mg alloy mesh reinforced polymer/extracellular matrix composite for critical-sized calvarial defect reconstruction. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 1374-1388.	2.7	18
20	Bio-derived three-dimensional hierarchical carbon-graphene-TiO2 as electrode for supercapacitors. Scientific Reports, 2018, 8, 4412.	3.3	24
21	Zirconium ions integrated in 1-hydroxyethylidene-1,1-diphosphonic acid (HEDP) as a metalorganic-like complex coating on biodegradable magnesium for corrosion control. Corrosion Science, 2018, 144, 277-287.	6.6	29
22	Anodic dissolution dictates the negative difference effect (NDE) of magnesium corrosion more in chemical pathway. Materials Letters, 2018, 232, 54-57.	2.6	14
23	In situ incorporation of heparin/bivalirudin into a phytic acid coating on biodegradable magnesium with improved anticorrosion and biocompatible properties. Journal of Materials Chemistry B, 2017, 5, 4162-4176.	5.8	24
24	Strengthened corrosion control of poly (lactic acid) (PLA) and poly (Îμ-caprolactone) (PCL) polymer-coated magnesium by imbedded hydrophobic stearic acid (SA) thin layer. Corrosion Science, 2016, 112, 327-337.	6.6	59
25	Comparative corrosion behavior of Zn with Fe and Mg in the course of immersion degradation in phosphate buffered saline. Corrosion Science, 2016, 111, 541-555.	6.6	110
26	Controlling the corrosion rate and behavior of biodegradable magnesium by a surface-immobilized ultrathin 1-hydroxyethylidene-1,1-diphosphonic acid (HEDP) film. RSC Advances, 2016, 6, 15247-15259.	3.6	28
27	Flow-induced corrosion of absorbable magnesium alloy: In-situ and real-time electrochemical study. Corrosion Science, 2016, 104, 277-289.	6.6	79
28	Phytic acid layer template-assisted deposition of TiO2 film on titanium: Surface electronic properties, super-hydrophilicity and bending strength. Materials and Design, 2016, 89, 476-484.	7.0	24
29	A dualâ€ŧask design of corrosionâ€controlling and osteoâ€compatible hexamethylenediaminetetrakis― (methylene phosphonic acid) (HDTMPA) coating on magnesium for biodegradable bone implants application. Journal of Biomedical Materials Research - Part A, 2015, 103, 1640-1652.	4.0	16
30	Free-standing microporous paper-like graphene films with electrodeposited PPy coatings as electrodes for supercapacitors. Journal of Materials Science: Materials in Electronics, 2015, 26, 747-754.	2.2	12
31	Epigallocatechin gallate (EGCG) induced chemical conversion coatings for corrosion protection of biomedical MgZnMn alloys. Corrosion Science, 2015, 94, 305-315.	6.6	49
32	Sandwiched polydopamine (PDA) layer for titanium dioxide (TiO2) coating on magnesium to enhance corrosion protection. Corrosion Science, 2015, 96, 67-73.	6.6	91
33	Direct correlation of electrochemical behaviors with anti-thrombogenicity of semiconducting titanium oxide films. Journal of Biomaterials Applications, 2014, 28, 719-728.	2.4	5
34	Corrosion-Controlling and Osteo-Compatible Mg Ion-Integrated Phytic Acid (Mg-PA) Coating on Magnesium Substrate for Biodegradable Implants Application. ACS Applied Materials & Interfaces, 2014, 6, 19531-19543.	8.0	106
35	Carbon-Doped Titanium Oxide Films by DC Reactive Magnetron Sputtering Using CO2 and O2 as Reactive Gas. Acta Metallurgica Sinica (English Letters), 2014, 27, 239-244.	2.9	9
36	Responsive surface charge transfer doping effect of reductive bio-molecules (glucose, fucoidan, and) Tj ETQq0 C) 0 rgBT /C 3.7	Dverlock 10 Tr

4109-4116.

#	Article	IF	CITATIONS
37	A surface-eroding poly(1,3-trimethylene carbonate) coating for fully biodegradable magnesium-based stent applications: Toward better biofunction, biodegradation and biocompatibility. Acta Biomaterialia, 2013, 9, 8678-8689.	8.3	134
38	Covalent immobilization of phytic acid on Mg by alkaline pre-treatment: Corrosion and degradation behavior in phosphate buffered saline. Corrosion Science, 2013, 75, 280-286.	6.6	73
39	Deformation and corrosion behaviors of Ti–O film deposited 316L stainless steel by plasma immersion ion implantation and deposition. Surface and Coatings Technology, 2013, 214, 117-123.	4.8	19
40	Finite Element Analysis of a Mechanical Heart Valve in Assembly. Advanced Materials Research, 2012, 569, 487-490.	0.3	0
41	Characterization and mechanical investigation of Ti–O2â^'x film prepared by plasma immersion ion implantation and deposition for cardiovascular stents surface modification. Nuclear Instruments & Methods in Physics Research B, 2012, 289, 91-96.	1.4	9
42	Dynamic curvature control of rolled-up metal nanomembranes activated by magnesium. Journal of Materials Chemistry, 2012, 22, 12983.	6.7	6
43	Corrosion susceptibility investigation of Ti–O film modified cobalt-chromium alloy (L-605) vascular stents by cyclic potentiodynamic polarization measurement. Surface and Coatings Technology, 2011, 206, 893-896.	4.8	19
44	Wettability and bloodcompatibility of a-C:N:H films deposited by PIII-D. Surface and Coatings Technology, 2010, 204, 3039-3042.	4.8	13
45	Anticoagulant surface modification of titanium via layerâ€byâ€layer assembly of collagen and sulfated chitosan multilayers. Journal of Biomedical Materials Research - Part A, 2009, 89A, 575-584.	4.0	44
46	Theoretical calculation and experimental study of influence of oxygen vacancy on the electronic structure and hemocompatibility of rutile TiO2. Science in China Series D: Earth Sciences, 2009, 52, 2742-2748.	0.9	10
47	Biomedical Applications of Plasma and Ion Beam Processing. Journal of the Vacuum Society of Japan, 2008, 51, 81-92.	0.3	3
48	Effect of hydrogen on the behavior of cultured human umbilical vein endothelial cells (HUVEC) on titanium oxide films fabricated by plasma immersion ion implantation and deposition. Surface and Coatings Technology, 2007, 201, 8140-8145.	4.8	7
49	The influence of polyethylene terephthalate surfaces modified by silver ion implantation on bacterial adhesion behavior. Surface and Coatings Technology, 2007, 201, 8155-8159.	4.8	50
50	Corrosion properties of oxygen plasma immersion ion implantation treated magnesium. Surface and Coatings Technology, 2007, 201, 8267-8272.	4.8	39
51	Functional inorganic films fabricated by PIII(-D) for surface modification of blood contacting biomaterials: Fabrication parameters, characteristics and antithrombotic properties. Surface and Coatings Technology, 2007, 201, 6828-6832.	4.8	6
52	Electrochemical behaviors of TiO2â^'x films synthesized by plasma-based ion implantation and deposition in fibrinogen containing PBS solution. Surface and Coatings Technology, 2007, 201, 6889-6892.	4.8	3
53	Effect of Ar plasma etching of Ti–O film surfaces on biological behavior of endothelial cell. Surface and Coatings Technology, 2007, 201, 6901-6905.	4.8	14
54	Platelet activation behavior on nitrogen plasma-implanted silicon. Materials Science and Engineering C, 2007, 27, 928-932.	7.3	17

#	Article	IF	CITATIONS
55	Si–N–O Films Synthesized by Plasma Immersion Ion Implantation and Deposition (PIII&D) for Blood-Contacting Biomedical Applications. IEEE Transactions on Plasma Science, 2006, 34, 1160-1165.	1.3	9
56	Characteristics and surface energy of silicon-doped diamond-like carbon films fabricated by plasma immersion ion implantation and deposition. Diamond and Related Materials, 2006, 15, 1276-1281.	3.9	46
57	Fabrication and surface characterization of pulsed reactive closed-field unbalanced magnetron sputtered amorphous silicon nitride films. Surface and Coatings Technology, 2006, 200, 4144-4151.	4.8	19
58	Comparative properties of titanium oxide biomaterials grown by pulsed vacuum arc plasma deposition and by unbalanced magnetron sputtering. Surface and Coatings Technology, 2006, 201, 157-163.	4.8	17
59	The microstructure and mechanical properties of TiN and TiO2/TiN duplex films synthesized by plasma immersion ion implantation and deposition on artificial heart valve. Surface and Coatings Technology, 2006, 201, 1012-1016.	4.8	17
60	Antithrombogenic investigation and biological behavior of cultured human umbilical vein endothelial cells on Ti-O film. Science in China Series D: Earth Sciences, 2006, 49, 20-28.	0.9	4
61	Ti-O/TiN films synthesized by plasma immersion ion implantation and deposition on 316L: Study of deformation behavior and mechanical properties. Thin Solid Films, 2005, 484, 219-224.	1.8	10
62	Surface characterization and blood compatibility of poly(ethylene terephthalate) modified by plasma surface grafting. Surface and Coatings Technology, 2005, 196, 307-311.	4.8	107
63	In vitro investigation of hemocompatibility of hydrophilic SiNx:H films fabricated by plasma-enhanced chemical vapor deposition. Surface and Coatings Technology, 2005, 200, 1945-1949.	4.8	16
64	Properties of titanium oxide synthesized by pulsed metal vacuum arc deposition. Surface and Coatings Technology, 2004, 176, 141-147.	4.8	25
65	Behavior of cultured human umbilical vein endothelial cells on titanium oxide films fabricated by plasma immersion ion implantation and deposition. Surface and Coatings Technology, 2004, 186, 270-276.	4.8	39
66	Inhibition of adherent platelet activation produced by Ti–O thin film fabricated by PIII. Surface and Coatings Technology, 2004, 186, 265-269.	4.8	12
67	TiN and Ti–O/TiN films fabricated by PIII-D for enhancement of corrosion and wear resistance of Ti–6Al–4V. Surface and Coatings Technology, 2004, 186, 136-140.	4.8	31
68	Surface modification of biomaterials by plasma immersion ion implantation. Surface and Coatings Technology, 2004, 186, 218-226.	4.8	106
69	Mechanical properties and platelet adhesion behavior of diamond-like carbon films synthesized by pulsed vacuum arc plasma deposition. Surface Science, 2003, 531, 177-184.	1.9	65
70	Mechanical properties and thermomechanical stability of diamond-like carbon films synthesized by pulsed vacuum arc plasma deposition. Surface and Coatings Technology, 2003, 173, 67-73.	4.8	17
71	Structure and properties of biomedical TiO2 films synthesized by dual plasma deposition. Surface and Coatings Technology, 2002, 156, 295-300.	4.8	42
72	Blood compatibility and sp3/sp2 contents of diamond-like carbon (DLC) synthesized by plasma immersion ion implantation-deposition. Surface and Coatings Technology, 2002, 156, 289-294.	4.8	121

#	Article	IF	CITATIONS
73	Deformation behavior of titanium nitride film prepared by plasma immersion ion implantation and deposition. Surface and Coatings Technology, 2002, 156, 170-175.	4.8	16
74	The Design of the Mechanical Heart Valve by Using the Parametric Method. Advanced Materials Research, 0, 683, 657-660.	0.3	0
75	Biodegradable Zn-Cu-Fe Alloy as a Promising Material for Craniomaxillofacial Implants: An in vitro Investigation into Degradation Behavior, Cytotoxicity, and Hemocompatibility. Frontiers in Chemistry, 0, 10, .	3.6	10