Yingju Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2936324/publications.pdf

Version: 2024-02-01

		159585	223800
60	2,259	30	46
papers	citations	h-index	g-index
60	60	60	2729
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Single-emission dual-enzyme magnetosensor for multiplex immunofluorometric assay of adulterated colorants in chili seasoning. Food Chemistry, 2022, 366, 130594.	8.2	8
2	Development of a highly sensitive and selective electrochemical immunosensor for controlling of rhodamine B abuse in food samples. Food Control, 2022, 133, 108662.	5 . 5	9
3	A needle-like cobalt-based bifunctional catalyst supported on carbon materials for effective overall water splitting. Nanotechnology, 2022, 33, 065704.	2.6	5
4	Handheld Platform for Sensitive Rosiglitazone Detection: Immunosensor Based on a Time-Based Readout Device. Analytical Chemistry, 2022, 94, 4294-4302.	6.5	12
5	An ultrasensitive microfluidic chip-based immunoassay for multiplex determination of 11 PDE-5 inhibitors in adulterated health foods. Sensors and Actuators B: Chemical, 2022, 358, 131450.	7.8	7
6	Multiplex optical bioassays for food safety analysis: Toward onâ€site detection. Comprehensive Reviews in Food Science and Food Safety, 2022, 21, 1627-1656.	11.7	25
7	Portable Dualâ€Modular Immunosensor Constructed from Bimetallic Metal–Organic Framework Heterostructure Grafted with Enzymeâ€Mimicking Label for Rosiglitazone Detection. Advanced Functional Materials, 2022, 32, .	14.9	30
8	Self-triggered fluorescent metal-organic framework mimic enzyme for competitive immunoassay of hypoglycemic drug in functional tea. Colloids and Surfaces B: Biointerfaces, 2022, 215, 112527.	5 . 0	8
9	A novel self-aggregated gold nanoparticles based on sensitive immunochromatographic assays for highly detection of opium poppy in herbal teas. Food Chemistry, 2022, 390, 133188.	8.2	0
10	A multi-colorimetric immunosensor for visual detection of ochratoxin A by mimetic enzyme etching of gold nanobipyramids. Mikrochimica Acta, 2021, 188, 62.	5 . 0	20
11	A photoelectrochemical/colorimetric immunosensor for broad-spectrum detection of ochratoxins using bifunctional copper oxide nanoflowers. Sensors and Actuators B: Chemical, 2021, 330, 129380.	7.8	34
12	Capsulation of AuNCs with AIE Effect into Metal–Organic Framework for the Marriage of a Fluorescence and Colorimetric Biosensor to Detect Organophosphorus Pesticides. Analytical Chemistry, 2021, 93, 7275-7282.	6. 5	177
13	Template-assisted Cu2O@Fe(OH)3 yolk-shell nanocages as biomimetic peroxidase: A multi-colorimetry and ratiometric fluorescence separated-type immunosensor for the detection of ochratoxin A. Journal of Hazardous Materials, 2021, 411, 125090.	12.4	40
14	Machine learning: Assisted multivariate detection and visual image matching to build broad-specificity immunosensor. Sensors and Actuators B: Chemical, 2021, 339, 129872.	7.8	12
15	"Dual-Signal-On―Integrated-Type Biosensor for Portable Detection of miRNA: Cas12a-Induced Photoelectrochemistry and Fluorescence Strategy. Analytical Chemistry, 2021, 93, 11816-11825.	6. 5	33
16	P-doped 3D graphene network supporting uniformly vertical MoS2 nanosheets for enhanced hydrogen evolution reaction. International Journal of Hydrogen Energy, 2020, 45, 4043-4053.	7.1	22
17	In-situ synthesis of hollow Co–MoS2 nanocomposites on the carbon nanowire arrays/carbon cloth as high-performance catalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2020, 45, 28361-28371.	7.1	17
18	Magnet-actuated droplet microfluidic immunosensor coupled with gel imager for detection of microcystin-LR in aquatic products. Talanta, 2020, 219, 121329.	5.5	14

#	Article	IF	CITATIONS
19	A colorimetric immunoassay based on cobalt hydroxide nanocages as oxidase mimics for detection of ochratoxin A. Analytica Chimica Acta, 2020, 1132, 101-109.	5.4	37
20	Electroplated synthesis of semi-rigid MoS2–rGO–Cu as efficient self-supporting electrode for hydrogen evolution reaction. Electrochimica Acta, 2020, 355, 136754.	5. 2	11
21	Self-assembled nanomaterials based on aggregation-induced emission of AuNCs: Fluorescence and colorimetric dual-mode biosensing of organophosphorus pesticides. Sensors and Actuators B: Chemical, 2020, 321, 128481.	7.8	52
22	Composite Films of CdS Nanoparticles, MoS ₂ Nanoflakes, Reduced Graphene Oxide, and Carbon Nanotubes for Ratiometric and Modular Immunosensing-Based Detection of Toxins in Cereals. ACS Applied Nano Materials, 2020, 3, 2822-2829.	5.0	21
23	Open Surface Droplet Microfluidic Magnetosensor for Microcystin-LR Monitoring in Reservoir. Analytical Chemistry, 2020, 92, 3409-3416.	6.5	14
24	Facile synthesis of Mn-doped MoS ₂ nanosheets on carbon nanotubes as efficient electrocatalyst for hydrogen evolution reaction. Nanotechnology, 2020, 31, 205403.	2.6	21
25	Dual-function of ZnS/Ag2S nanocages in ratiometric immunosensors for the discriminant analysis of ochratoxins: Photoelectrochemistry and electrochemistry. Sensors and Actuators B: Chemical, 2020, 314, 128066.	7.8	27
26	Molecular AND logic gate for multiple single-nucleotide mutations detection based on CRISPR/Cas9n system-trigged signal amplification. Analytica Chimica Acta, 2020, 1112, 46-53.	5.4	16
27	Photoelectrochemical detection of ultra-trace fluorine ion using TiO ₂ nanorod arrays as a probe. RSC Advances, 2019, 9, 26712-26717.	3.6	5
28	A facile layer-by-layer fabrication of three dimensional MoS2-rGO-CNTs with high performance for hydrogen evolution reaction. Electrochimica Acta, 2019, 300, 235-241.	5 . 2	30
29	Multifunctional Peroxidase-Encapsulated Nanoliposomes: Bioetching-Induced Photoelectrometric and Colorimetric Immunoassay for Broad-Spectrum Detection of Ochratoxins. ACS Applied Materials & Amp; Interfaces, 2019, 11, 23832-23839.	8.0	38
30	Point-of-need detection of microcystin-LR using a smartphone-controlled electrochemical analyzer. Sensors and Actuators B: Chemical, 2019, 294, 132-140.	7.8	40
31	Colorimetric detection of nucleic acid sequences in plant pathogens based on CRISPR/Cas9 triggered signal amplification. Mikrochimica Acta, 2019, 186, 243.	5 . 0	50
32	Double-integrated mimic enzymes for the visual screening of Microcystin-LR: Copper hydroxide nanozyme and G-quadruplex/hemin DNAzyme. Analytica Chimica Acta, 2019, 1054, 128-136.	5 . 4	32
33	A dual-signal readout enzyme-free immunosensor based on hybridization chain reaction-assisted formation of copper nanoparticles for the detection of microcystin-LR. Biosensors and Bioelectronics, 2019, 126, 151-159.	10.1	35
34	<i>In-situ</i> synthesis of monodispersed Au nanoparticles on eggshell membrane by the extract of <i>Lagerstroemia speciosa</i> leaves for the catalytic reduction of 4-nitrophenol. Materials Research Express, 2019, 6, 015002.	1.6	17
35	Broad-specificity photoelectrochemical immunoassay for the simultaneous detection of ochratoxin A, ochratoxin B and ochratoxin C. Biosensors and Bioelectronics, 2018, 106, 219-226.	10.1	64
36	Construction of CdS/B-TiO2 nanorods photoelectrochemical immunosensor for the detection of microcystin-LR using SiO2@G-quadruplex as multi-amplifier. Sensors and Actuators B: Chemical, 2018, 254, 727-735.	7.8	42

#	Article	IF	Citations
37	Fe ³⁺ -Enhanced NIR-to-NIR upconversion nanocrystals for tumor-targeted trimodal bioimaging. New Journal of Chemistry, 2018, 42, 17073-17082.	2.8	9
38	Dual-Modal Split-Type Immunosensor for Sensitive Detection of Microcystin-LR: Enzyme-Induced Photoelectrochemistry and Colorimetry. Analytical Chemistry, 2018, 90, 9606-9613.	6.5	134
39	Ultrasensitive photoelectrochemical detection of microcystin-LR based on hybridization chain reaction assisted exciton-plasmon interaction and enzymatic biocatalytic precipitation. Sensors and Actuators B: Chemical, 2018, 276, 180-188.	7.8	26
40	Strongly coupled MoS ₂ nanoflake–carbon nanotube nanocomposite as an excellent electrocatalyst for hydrogen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 1558-1566.	10.3	117
41	Laccase – methacrylyol functionalized magnetic particles: Highly immobilized, reusable, and efficacious for methyl red decolourization. International Journal of Biological Macromolecules, 2017, 102, 144-152.	7.5	39
42	A novel visible-light driven photoelectrochemical immunosensor based on multi-amplification strategy for ultrasensitive detection of microcystin-LR. Analytica Chimica Acta, 2017, 994, 82-91.	5.4	33
43	Polydopamine as a bridge to decorate monodisperse gold nanoparticles on Fe ₃ O ₄ nanoclusters for the catalytic reduction of 4-nitrophenol. RSC Advances, 2017, 7, 45545-45551.	3.6	43
44	Ultradispersed and Single-Layered MoS ₂ Nanoflakes Strongly Coupled with Graphene: An Optimized Structure with High Kinetics for the Hydrogen Evolution Reaction. ACS Applied Materials & amp; Interfaces, 2017, 9, 39380-39390.	8.0	46
45	A rolling circle amplification signal-enhanced immunosensor for ultrasensitive microcystin-LR detection based on a magnetic graphene-functionalized electrode. RSC Advances, 2017, 7, 39906-39913.	3.6	26
46	Visible light photoelectrochemical sulfide sensor based the use of TiO2 nanotube arrays loaded with Cu2O. Mikrochimica Acta, 2017, 184, 4065-4072.	5 . O	34
47	Monoclonal antibody-based homogeneous immunoassay for three banned agonists and molecular modeling insight. Food and Agricultural Immunology, 2017, 28, 1438-1449.	1.4	8
48	Multiple amplified enzyme-free electrochemical immunosensor based on G-quadruplex/hemin functionalized mesoporous silica with redox-active intercalators for microcystin-LR detection. Biosensors and Bioelectronics, 2017, 98, 126-133.	10.1	49
49	Construction of portable electrochemical immunosensors based on graphene hydrogel@polydopamine for microcystin-LR detection using multi-mesoporous carbon sphere-enzyme labels. RSC Advances, 2016, 6, 51662-51669.	3.6	22
50	Hierarchically nanostructured MoS ₂ with rich in-plane edges as a high-performance electrocatalyst for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2016, 4, 14577-14585.	10.3	58
51	In-situ assembly of biocompatible core–shell hierarchical nanostructures sensitized immunosensor for microcystin-LR detection. Biosensors and Bioelectronics, 2016, 78, 381-389.	10.1	75
52	A multi-walled carbon nanotubes-poly(l-lysine) modified enantioselective immunosensor for ofloxacin by using multi-enzyme-labeled gold nanoflower as signal enhancer. Biosensors and Bioelectronics, 2015, 73, 85-92.	10.1	78
53	Sensitive electrochemical immunoassay for chlorpyrifos by using flake-like Fe3O4 modified carbon nanotubes as the enhanced multienzyme label. Analytica Chimica Acta, 2015, 899, 91-99.	5.4	44
54	Metal-free carbon nanotube–SiC nanowire heterostructures with enhanced photocatalytic H ₂ evolution under visible light irradiation. Catalysis Science and Technology, 2015, 5, 2798-2806.	4.1	74

Yıngju Liu

#	Article	IF	CITATION
55	Ultra-thin SiC layer covered graphene nanosheets as advanced photocatalysts for hydrogen evolution. Journal of Materials Chemistry A, 2015, 3, 10999-11005.	10.3	80
56	Rational Construction of Strongly Coupled Metal–Metal Oxide–Graphene Nanostructure with Excellent Electrocatalytic Activity and Durability. ACS Applied Materials & Diterfaces, 2014, 6, 10258-10264.	8.0	57
57	Growth–Dissolution–Regrowth Transitions of Fe ₃ O ₄ Nanoparticles as Building Blocks for 3D Magnetic Nanoparticle Clusters under Hydrothermal Conditions. Langmuir, 2013, 29, 15433-15441.	3.5	73
58	Sensitive immunosensor for benzo[a]pyrene detection based on dual amplification strategy of PAMAM dendrimer and amino-modified methylene blue/SiO2 core–shell nanoparticles. Biosensors and Bioelectronics, 2011, 26, 3761-3767.	10.1	29
59	A dendritic nanosilica-functionalized electrochemical immunosensor with sensitive enhancement for the rapid screening of benzo[a]pyrene. Electrochimica Acta, 2011, 56, 1988-1994.	5. 2	22
60	Electrochemical Sensor for Tryptophan Determination Based on Copper-cobalt Hexacyanoferrate Film Modified Graphite Electrode. Sensors, 2007, 7, 2446-2457.	3.8	58