## Sudipta Chatterjee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2936070/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Adsorption of congo red by chitosan hydrogel beads impregnated with carbon nanotubes.<br>Bioresource Technology, 2010, 101, 1800-1806.                                                                                       | 4.8 | 359       |
| 2  | Adsorptive removal of congo red, a carcinogenic textile dye by chitosan hydrobeads: Binding<br>mechanism, equilibrium and kinetics. Colloids and Surfaces A: Physicochemical and Engineering<br>Aspects, 2007, 299, 146-152. | 2.3 | 354       |
| 3  | Enhanced adsorption of congo red from aqueous solutions by chitosan hydrogel beads impregnated with cetyl trimethyl ammonium bromide. Bioresource Technology, 2009, 100, 2803-2809.                                          | 4.8 | 297       |
| 4  | The removal of nitrate from aqueous solutions by chitosan hydrogel beads. Journal of Hazardous<br>Materials, 2009, 164, 1012-1018.                                                                                           | 6.5 | 244       |
| 5  | Adsorption of a model anionic dye, eosin Y, from aqueous solution by chitosan hydrobeads. Journal of<br>Colloid and Interface Science, 2005, 288, 30-35.                                                                     | 5.0 | 242       |
| 6  | Nitrate removal from aqueous solutions by cross-linked chitosan beads conditioned with sodium bisulfate. Journal of Hazardous Materials, 2009, 166, 508-513.                                                                 | 6.5 | 165       |
| 7  | Congo red adsorption from aqueous solutions by using chitosan hydrogel beads impregnated with nonionic or anionic surfactant. Bioresource Technology, 2009, 100, 3862-3868.                                                  | 4.8 | 149       |
| 8  | Dual-responsive (pH/temperature) Pluronic F-127 hydrogel drug delivery system for textile-based transdermal therapy. Scientific Reports, 2019, 9, 11658.                                                                     | 1.6 | 129       |
| 9  | An e-nose made of carbon nanotube based quantum resistive sensors for the detection of eighteen polar/nonpolar VOC biomarkers of lung cancer. Journal of Materials Chemistry B, 2013, 1, 4563.                               | 2.9 | 115       |
| 10 | Review of Stimuli-Responsive Polymers in Drug Delivery and Textile Application. Molecules, 2019, 24, 2547.                                                                                                                   | 1.7 | 115       |
| 11 | Thermoresponsive Hydrogels and Their Biomedical Applications: Special Insight into Their Applications<br>in Textile Based Transdermal Therapy. Polymers, 2018, 10, 480.                                                      | 2.0 | 112       |
| 12 | Clarification of fruit juice with chitosan. Process Biochemistry, 2004, 39, 2229-2232.                                                                                                                                       | 1.8 | 97        |
| 13 | Enhanced mechanical strength of chitosan hydrogel beads by impregnation with carbon nanotubes.<br>Carbon, 2009, 47, 2933-2936.                                                                                               | 5.4 | 92        |
| 14 | Removal of Reactive Black 5 by zero-valent iron modified with various surfactants. Chemical Engineering Journal, 2010, 160, 27-32.                                                                                           | 6.6 | 87        |
| 15 | A new type of chitosan hydrogel sorbent generated by anionic surfactant gelation. Bioresource<br>Technology, 2010, 101, 3853-3858.                                                                                           | 4.8 | 82        |
| 16 | Adsorption of a cationic dye, methylene blue, on to chitosan hydrogel beads generated by anionic surfactant gelation. Environmental Technology (United Kingdom), 2011, 32, 1503-1514.                                        | 1.2 | 82        |
| 17 | Influence of the polyethyleneimine grafting on the adsorption capacity of chitosan beads for Reactive<br>Black 5 from aqueous solutions. Chemical Engineering Journal, 2011, 166, 168-175.                                   | 6.6 | 70        |
| 18 | Effect of the addition mode of carbon nanotubes for the production of chitosan hydrogel<br>core–shell beads on adsorption of Congo red from aqueous solution. Bioresource Technology, 2011,<br>102, 4402-4409.               | 4.8 | 68        |

SUDIPTA CHATTERJEE

| #  | Article                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Review of Applications and Future Prospects of Stimuli-Responsive Hydrogel Based on<br>Thermo-Responsive Biopolymers in Drug Delivery Systems. Polymers, 2021, 13, 2086.                                                                              | 2.0 | 64        |
| 20 | Influence of impregnation of chitosan beads with cetyl trimethyl ammonium bromide on their<br>structure and adsorption of congo red from aqueous solutions. Chemical Engineering Journal, 2009,<br>155, 254-259.                                      | 6.6 | 62        |
| 21 | Enhanced coagulation of bentonite particles in water by a modified chitosan biopolymer. Chemical<br>Engineering Journal, 2009, 148, 414-419.                                                                                                          | 6.6 | 56        |
| 22 | Supersorption Capacity of Anionic Dye by Newer Chitosan Hydrogel Capsules via Green Surfactant<br>Exchange Method. ACS Sustainable Chemistry and Engineering, 2018, 6, 3604-3614.                                                                     | 3.2 | 56        |
| 23 | Enhancement of growth and chitosan production by Rhizopus oryzae in whey medium by plant growth hormones. International Journal of Biological Macromolecules, 2008, 42, 120-126.                                                                      | 3.6 | 53        |
| 24 | Drug delivery system of dual-responsive PF127 hydrogel with polysaccharide-based nano-conjugate for textile-based transdermal therapy. Carbohydrate Polymers, 2020, 236, 116074.                                                                      | 5.1 | 48        |
| 25 | Encapsulation of fish oil with N-stearoyl O-butylglyceryl chitosan using membrane and ultrasonic emulsification processes. Carbohydrate Polymers, 2015, 123, 432-442.                                                                                 | 5.1 | 44        |
| 26 | Influence of pH-responsive compounds synthesized from chitosan and hyaluronic acid on<br>dual-responsive (pH/temperature) hydrogel drug delivery systems of Cortex Moutan. International<br>Journal of Biological Macromolecules, 2021, 168, 163-174. | 3.6 | 41        |
| 27 | Enhanced molar sorption ratio for naphthalene through the impregnation of surfactant into chitosan hydrogel beads. Bioresource Technology, 2010, 101, 4315-4321.                                                                                      | 4.8 | 30        |
| 28 | Coagulation of soil suspensions containing nonionic or anionic surfactants using chitosan, polyacrylamide, and polyaluminium chloride. Chemosphere, 2009, 75, 1307-1314.                                                                              | 4.2 | 28        |
| 29 | A study on antifungal activity of water-soluble chitosan against Macrophomina phaseolina.<br>International Journal of Biological Macromolecules, 2014, 67, 452-457.                                                                                   | 3.6 | 27        |
| 30 | Preparation of microcapsules with multi-layers structure stabilized by chitosan and sodium dodecyl sulfate. Carbohydrate Polymers, 2012, 90, 967-975.                                                                                                 | 5.1 | 26        |
| 31 | Impact of encapsulation on the physicochemical properties and gastrointestinal stability of fish oil.<br>LWT - Food Science and Technology, 2016, 65, 206-213.                                                                                        | 2.5 | 26        |
| 32 | The Influence of 1-Butanol and Trisodium Citrate Ion on Morphology and Chemical Properties of Chitosan-Based Microcapsules during Rigidification by Alkali Treatment. Marine Drugs, 2014, 12, 5801-5816.                                              | 2.2 | 21        |
| 33 | Development of Multilayer Microcapsules by a Phase Coacervation Method Based on Ionic<br>Interactions for Textile Applications. Pharmaceutics, 2014, 6, 281-297.                                                                                      | 2.0 | 21        |
| 34 | Chitosan and Chitosan-co-Poly( <i>ε</i> -caprolactone) Grafted Multiwalled Carbon Nanotube<br>Transducers for Vapor Sensing. Journal of Nanoscience and Nanotechnology, 2014, 14, 2425-2435.                                                          | 0.9 | 20        |
| 35 | Enhanced solubilization of phenanthrene in Triton X-100 solutions by the addition of small amounts of chitosan. Chemical Engineering Journal, 2010, 163, 450-453.                                                                                     | 6.6 | 19        |
| 36 | Microencapsulation of fish oil. Lipid Technology, 2016, 28, 13-15.                                                                                                                                                                                    | 0.3 | 18        |

3

SUDIPTA CHATTERJEE

| #  | Article                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Synthesis and characterization of chitosan droplet particles by ionic gelation and phase coacervation. Polymer Bulletin, 2014, 71, 1001-1013.                                                       | 1.7 | 17        |
| 38 | Influence of plant growth hormones on the growth of Mucor rouxii and chitosan production.<br>Microbiological Research, 2009, 164, 347-351.                                                          | 2.5 | 16        |
| 39 | Adsorption of Congo Red from Aqueous Solutions Using Chitosan Hydrogel Beads Formed by Various<br>Anionic Surfactants. Separation Science and Technology, 2011, 46, 986-996.                        | 1.3 | 12        |
| 40 | A study on biochemical changes during cultivation of <i>Rhizopus oryzae</i> in deproteinized whey medium in relation to chitosan production. Letters in Applied Microbiology, 2014, 59, 155-160.    | 1.0 | 12        |
| 41 | Stimuli-Responsive Hydrogels: An Interdisciplinary Overview. , 0, , .                                                                                                                               |     | 11        |
| 42 | Effect of Surfactant Impregnation into Chitosan Hydrogel Beads Formed by Sodium Dodecyl Sulfate<br>Gelation for the Removal of Congo Red. Separation Science and Technology, 2011, 46, 2022-2031.   | 1.3 | 9         |
| 43 | Impact of the type of emulsifier on the physicochemical characteristics of the prepared fish oil-loaded microcapsules. Journal of Microencapsulation, 2017, 34, 366-382.                            | 1.2 | 9         |
| 44 | Improved adsorption of Congo red from aqueous solution using alkali-treated goethite impregnated chitosan hydrogel capsule. Journal of Environmental Chemical Engineering, 2022, 10, 108244.        | 3.3 | 8         |
| 45 | Highly efficient capture of naphthalene by nonionic surfactants in hydrogel capsules. Journal of the<br>Taiwan Institute of Chemical Engineers, 2017, 78, 75-80.                                    | 2.7 | 3         |
| 46 | Effect of chitosan addition on phenanthrene solubilization in anionic or cationic surfactant solutions. Desalination and Water Treatment, 2012, 37, 253-258.                                        | 1.0 | 2         |
| 47 | Effect of coagulant addition on the sedimentation of a surfactant-containing washing solution used for phenanthrene-contaminated soil. Korean Journal of Chemical Engineering, 2011, 28, 2293-2299. | 1.2 | 1         |
| 48 | Preparation of micro- and nano-emulsions of soybean oil and removal of sorbed phenanthrene from sandy soil. Desalination and Water Treatment, 2013, 51, 3207-3214.                                  | 1.0 | 1         |