Sergio Brochsztain

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2935967/publications.pdf

Version: 2024-02-01

516710 477307 47 942 16 29 citations g-index h-index papers 47 47 47 1291 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Functionalized mesoporous silicas SBA-15 for heterogeneous photocatalysis towards CECs removal from secondary urban wastewater. Chemosphere, 2022, 287, 132023.	8.2	19
2	Stabilization of free radicals in layer-by-layer nanoarchitectures containing multiple arylenediimides. Dyes and Pigments, 2022, 198, 109948.	3.7	2
3	Radical Anions and Dianions of Naphthalenediimides Generated within Layer-by-Layer Zirconium Phosphonate Thin Films. Langmuir, 2022, 38, 2153-2161.	3.5	1
4	Novel periodic mesoporous organosilicas containing pyromellitimides and their application for the photodegradation of asphaltenes. Microporous and Mesoporous Materials, 2021, 312, 110740.	4.4	4
5	Layer-by-Layer Naphthalenediimide/Zn Phosphonate Hybrid Films Grown from Aqueous Solutions by a Simple Deposition Technique. Langmuir, 2021, 37, 2494-2502.	3.5	7
6	Periodic mesoporous organosilicas containing naphthalenediimides within the pore walls for asphaltene adsorption. Microporous and Mesoporous Materials, 2020, 294, 109909.	4.4	10
7	Efficient Electronic Coupling in Perylenediimide Multilayered Films on Indium Tin Oxide. Journal of Physical Chemistry C, 2020, 124, 5541-5551.	3.1	7
8	Hydrocarbon generation in the Permian Irati organic-rich shales under the influence of the early cretaceous Paran $ ilde{A}_i$ Large Igneous Province. Marine and Petroleum Geology, 2020, 117, 104410.	3.3	10
9	Evaluation of Cyclodextrins as Environmentally Friendly Wettability Modifiers for Enhanced Oil Recovery. Colloids and Interfaces, 2018, 2, 10.	2.1	5
10	A Novel Synthesis Route of Mesoporous $\hat{I}^3\text{-Alumina}$ from Polyoxohydroxide Aluminum. Materials Research, 2018, 21, .	1.3	37
11	Polysilsesquioxane naphthalenediimide thermo and photochromic gels. Journal of Luminescence, 2018, 204, 685-691.	3.1	15
12	Synthesis of Novel Periodic Mesoporous Organosilicas Containing 1,4,5,8-Naphthalenediimides within the Pore Walls and Their Reduction To Generate Wall-Embedded Free Radicals. Langmuir, 2018, 34, 8195-8204.	3.5	14
13	Dye photodegradation employing mesoporous organosilicas functionalized with 1,8-naphthalimides as heterogeneous catalysts. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 332, 316-325.	3.9	7
14	Biogenic methane and carbon dioxide generation in organic-rich shales from southeastern Brazil. International Journal of Coal Geology, 2016, 162, 1-13.	5.0	13
15	Potential applications of cyclodextrins in enhanced oil recovery. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 469, 42-50.	4.7	18
16	Color-Tunable Fluorescence and White Light Emission from Mesoporous Organosilicas Based on Energy Transfer from 1,8-Naphthalimide Hosts to Perylenediimide Guests. Journal of Physical Chemistry C, 2015, 119, 26989-26998.	3.1	23
17	Characterization of a Perylenediimide Self-Assembled Monolayer on Indium Tin Oxide Electrodes Using Electrochemical Impedance Spectroscopy. Journal of Physical Chemistry C, 2014, 118, 4103-4112.	3.1	34
18	Photo-induced electron transfer in supramolecular materials of titania nanostructures and cytochrome c. RSC Advances, 2012, 2, 7417.	3.6	11

#	Article	IF	CITATIONS
19	Modification of molecular sieves MCM-41 and SBA-15 with covalently grafted pyromellitimide and 1,4,5,8-naphthalenediimide. Journal of Colloid and Interface Science, 2012, 368, 34-40.	9.4	15
20	Covalent attachment of 4-amino-1,8-naphthalimides onto the walls of mesoporous molecular sieves MCM-41 and SBA-15. Dyes and Pigments, 2011, 89, 97-104.	3.7	16
21	Inclusion complexes of cyclodextrins with 4-amino-1,8-naphthalimides (part 2). Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2010, 68, 313-322.	1.6	3
22	Aggregation of 3,4,9,10-Perylenediimide Radical Anions and Dianions Generated by Reduction with Dithionite in Aqueous Solutions. Journal of Physical Chemistry A, 2009, 113, 1747-1752.	2.5	104
23	Covalent attachment of 3,4,9,10-perylenediimides onto the walls of mesoporous molecular sieves MCM-41 and SBA-15. Microporous and Mesoporous Materials, 2008, 113, 463-471.	4.4	22
24	Spectroscopic, Structural, and Functional Characterization of the Alternative Low-Spin State of Horse Heart Cytochrome c. Biophysical Journal, 2008, 94, 4066-4077.	0.5	44
25	Peroxidase Catalytic Cycle of MCM-41-Entrapped Microperoxidase-11 as a Mechanism for Phenol Oxidation. Journal of Nanoscience and Nanotechnology, 2007, 7, 3643-3652.	0.9	15
26	Highly Stable 3,4,9,10-Perylenediimide Radical Anions Immobilized in Robust Zirconium Phosphonate Self-Assembled Films. Langmuir, 2007, 23, 11972-11976.	3. 5	59
27	Solid state fluorescence of a 3,4,9,10-perylenetetracarboxylic diimide derivative encapsulated in the pores of mesoporous silica MCM-41. Microporous and Mesoporous Materials, 2007, 102, 258-264.	4.4	16
28	Reaction route control by microperoxidase-9/CTAB micelle ratios. Physical Chemistry Chemical Physics, 2006, 8, 1963.	2.8	9
29	Characterization of a Novel Water-Soluble 3,4,9,10-Perylenetetracarboxylic Diimide in Solution and in Self-Assembled Zirconium Phosphonate Thin Films. Langmuir, 2006, 22, 1680-1687.	3.5	36
30	Stable Photoinduced Charge Separation in Nanostructured Films Containing a 1,4,5,8-Naphthalenetetracarboxylic Diimide and Cytochrome <i>c</i> . Journal of Nanoscience and Nanotechnology, 2006, 6, 2338-2343.	0.9	1
31	Photoinduced electron transfer between cytochrome c and a novel 1,4,5,8-naphthalenetetracarboxylic diimide with amphiphilic character. Journal of Photochemistry and Photobiology B: Biology, 2005, 79, 1-9.	3.8	9
32	Characterization of self-assembled thin films of zirconium phosphonate/aromatic diimides. Thin Solid Films, 2005, 492, 30-34.	1.8	21
33	Photochemical Reduction of Cytochrome c by a 1,4,5,8-Naphthalenediimide Radical Anion $\hat{A}\P$. Photochemistry and Photobiology, 2004, 80, 518.	2.5	7
34	Photoinduced electron transfer in silica-supported self-assembled thin films containing a 1,4,5,8-naphthalenetetracarboxylic diimide and cytochrome c. Journal of Materials Chemistry, 2004, 14, 54.	6.7	12
35	Photochemical Reduction of Cytochrome <i>c</i> by a 1,4,5,8â€Naphthalenediimide Radical Anion [¶] . Photochemistry and Photobiology, 2004, 80, 518-524.	2.5	1
36	Porphyrin and Naphtalenediimide Functionalized Silica-gel Particles. Photophysical Properties. Chemistry Letters, 2002, 31, 604-605.	1.3	1

#	Article	IF	CITATIONS
37	Photophysical and photochemical properties of porphyrin and naphthalene diimide modified silica-gel particles. Journal of Non-Crystalline Solids, 2002, 304, 116-125.	3.1	13
38	Stabilization of naphthalene-1,8:4,5-dicarboximide radicals in zirconium phosphonate solid materials and thin films. Journal of Materials Chemistry, 2002, 12, 1250-1255.	6.7	32
39	Inclusion Complexes of Cyclodextrins with 4-Amino-1,8-Naphthalimides. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2002, 44, 207-211.	1.6	10
40	Novel self-assembled films of zirconium phosphonate/1,4,5,8-naphthalenediimides. Thin Solid Films, 2000, 371, 109-113.	1.8	19
41	Zirconium phosphonate/1,4,5,8-naphthalenediimides self-assembled films. Anais Da Academia Brasileira De Ciencias, 2000, 72, 75-78.	0.8	0
42	pH-Dependent Excited-State Properties of N,N-di(2-phosphonoethyl)-1,4,5,8-naphthalenediimide. Photochemistry and Photobiology, 1999, 70, 35-39.	2.5	16
43	Solubilization of 1,4,5,8-Naphthalenediimides and 1,8-Naphthalimides through the Formation of Novel Hostâ Guest Complexes with α-Cyclodextrin. Langmuir, 1999, 15, 4486-4494.	3.5	21
44	pH-Dependent Excited-State Properties of N,N′-di(2-phosphonoethyl)-1,4,5,8-naphthalenediimide. Photochemistry and Photobiology, 1999, 70, 35.	2.5	14
45	Inclusion complexes of naphthalimide derivatives with cyclodextrins. Journal of Photochemistry and Photobiology A: Chemistry, 1997, 107, 195-200.	3.9	28
46	Photophysical characterization of a 1,4,5,8-naphthalenediimide derivative. Journal of Photochemistry and Photobiology A: Chemistry, 1997, 111, 97-104.	3.9	132
47	lon binding and selectivity in zwitterionic micelles. The Journal of Physical Chemistry, 1990, 94, 6781-6785.	2.9	29