Luc Friboulet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2935815/publications.pdf

Version: 2024-02-01

70 papers 7,231 citations

126708 33 h-index 59 g-index

71 all docs

71 docs citations

71 times ranked 8618 citing authors

#	Article	IF	CITATIONS
1	Molecular Mechanisms of Resistance to First- and Second-Generation ALK Inhibitors in <i>ALK</i> -Rearranged Lung Cancer. Cancer Discovery, 2016, 6, 1118-1133.	7.7	919
2	The ALK Inhibitor Ceritinib Overcomes Crizotinib Resistance in Non–Small Cell Lung Cancer. Cancer Discovery, 2014, 4, 662-673.	7.7	720
3	Patient-derived models of acquired resistance can identify effective drug combinations for cancer. Science, 2014, 346, 1480-1486.	6.0	635
4	Resensitization to Crizotinib by the Lorlatinib <i>ALK</i> Resistance Mutation L1198F. New England Journal of Medicine, 2016, 374, 54-61.	13.9	433
5	PF-06463922, an ALK/ROS1 Inhibitor, Overcomes Resistance to First and Second Generation ALK Inhibitors in Preclinical Models. Cancer Cell, 2015, 28, 70-81.	7.7	389
6	Acquired Resistance to Crizotinib from a Mutation in <i>CD74</i> â€" <i>ROS1</i> . New England Journal of Medicine, 2013, 368, 2395-2401.	13.9	345
7	ERCC1 Isoform Expression and DNA Repair in Non–Small-Cell Lung Cancer. New England Journal of Medicine, 2013, 368, 1101-1110.	13.9	342
8	Two Novel ALK Mutations Mediate Acquired Resistance to the Next-Generation ALK Inhibitor Alectinib. Clinical Cancer Research, 2014, 20, 5686-5696.	3.2	261
9	Making the first move in EGFR-driven or ALK-driven NSCLC: first-generation or next-generation TKI?. Nature Reviews Clinical Oncology, 2018, 15, 694-708.	12.5	255
10	Sequential ALK Inhibitors Can Select for Lorlatinib-Resistant Compound <i>ALK</i> Mutations in ALK-Positive Lung Cancer. Cancer Discovery, 2018, 8, 714-729.	7.7	228
11	Progression-Free and Overall Survival in ALK-Positive NSCLC Patients Treated with Sequential Crizotinib and Ceritinib. Clinical Cancer Research, 2015, 21, 2745-2752.	3.2	173
12	Secreted PD-L1 variants mediate resistance to PD-L1 blockade therapy in non–small cell lung cancer. Journal of Experimental Medicine, 2019, 216, 982-1000.	4.2	173
13	Cabozantinib Overcomes Crizotinib Resistance in ROS1 Fusion–Positive Cancer. Clinical Cancer Research, 2015, 21, 166-174.	3.2	172
14	Patterns of Metastatic Spread and Mechanisms of Resistance to Crizotinib in ⟨i⟩ROS1⟨/i⟩-Positive Non–Small-Cell Lung Cancer. JCO Precision Oncology, 2017, 2017, 1-13.	1.5	158
15	Primary Patient-Derived Cancer Cells and Their Potential for Personalized Cancer Patient Care. Cell Reports, 2017, 21, 3298-3309.	2.9	157
16	SHP2 inhibition restores sensitivity in ALK-rearranged non-small-cell lung cancer resistant to ALK inhibitors. Nature Medicine, 2018, 24, 512-517.	15.2	155
17	Clinicogenomic Analysis of <i>FGFR2</i> -Rearranged Cholangiocarcinoma Identifies Correlates of Response and Mechanisms of Resistance to Pemigatinib. Cancer Discovery, 2021, 11, 326-339.	7.7	144
18	Crizotinib-Resistant <i>ROS1</i> Mutations Reveal a Predictive Kinase Inhibitor Sensitivity Model for <i>ROS1</i> and <i>ALK</i> Rearranged Lung Cancers. Clinical Cancer Research, 2016, 22, 5983-5991.	3.2	124

#	Article	IF	CITATIONS
19	P-glycoprotein Mediates Ceritinib Resistance in Anaplastic Lymphoma Kinase-rearranged Non-small Cell Lung Cancer. EBioMedicine, 2016, 3, 54-66.	2.7	123
20	Diverse Resistance Mechanisms to the Third-Generation ALK Inhibitor Lorlatinib in ALK-Rearranged Lung Cancer. Clinical Cancer Research, 2020, 26, 242-255.	3.2	114
21	BRAF in non-small cell lung cancer (NSCLC): Pickaxing another brick in the wall. Cancer Treatment Reviews, 2018, 66, 82-94.	3.4	112
22	Molecular mechanisms of acquired resistance to third-generation EGFR-TKIs in EGFR T790M-mutant lung cancer. Annals of Oncology, 2018, 29, i28-i37.	0.6	95
23	Acquired Resistance Mutations to ALK Inhibitors Identified by Single Circulating Tumor Cell Sequencing in <i>ALK</i> -Rearranged Nonâ€"Small-Cell Lung Cancer. Clinical Cancer Research, 2019, 25, 6671-6682.	3.2	95
24	Facts and New Hopes on Selective FGFR Inhibitors in Solid Tumors. Clinical Cancer Research, 2020, 26, 764-774.	3.2	85
25	A high-throughput screen identifies PARP1/2 inhibitors as a potential therapy for ERCC1-deficient non-small cell lung cancer. Oncogene, 2013, 32, 5377-5387.	2.6	83
26	Oncogene addiction in non-small cell lung cancer: Focus on ROS1 inhibition. Cancer Treatment Reviews, 2017, 55, 83-95.	3.4	58
27	Circulating Tumor DNA Analysis for Patients with Oncogene-Addicted NSCLC With Isolated Central Nervous System Progression. Journal of Thoracic Oncology, 2020, 15, 383-391.	0.5	58
28	Molecular Characteristics of ERCC1-Negative versus ERCC1-Positive Tumors in Resected NSCLC. Clinical Cancer Research, 2011, 17, 5562-5572.	3.2	56
29	Molecular mechanisms of resistance to BRAF and MEK inhibitors in BRAFV600E non–small cell lung cancer. European Journal of Cancer, 2020, 132, 211-223.	1.3	53
30	Gilteritinib overcomes lorlatinib resistance in ALK-rearranged cancer. Nature Communications, 2021, 12, 1261.	5.8	52
31	Recurrent Overexpression of c-IAP2 in EBV-Associated Nasopharyngeal Carcinomas: Critical Role in Resistance to Toll-like Receptor 3-Mediated Apoptosis. Neoplasia, 2008, 10, 1183-IN7.	2.3	45
32	PARP1 impact on DNA repair of platinum adducts: Preclinical and clinical read-outs. Lung Cancer, 2013, 80, 216-222.	0.9	40
33	ERCC1 function in nuclear excision and interstrand crosslink repair pathways is mediated exclusively by the ERCC1-202 isoform. Cell Cycle, 2013, 12, 3298-3306.	1.3	37
34	Clinical Relevance of an Amplicon-Based Liquid Biopsy for Detecting (i>ALK (i>and (i>ROS1 (i>Fusion and Resistance Mutations in Patients With Nonâ€"Small-Cell Lung Cancer. JCO Precision Oncology, 2020, 4, 272-282.	1.5	36
35	Plasma proteomics identifies leukemia inhibitory factor (LIF) as a novel predictive biomarker of immune-checkpoint blockade resistance. Annals of Oncology, 2021, 32, 1381-1390.	0.6	33
36	High Prevalence of Somatic Oncogenic Driver Alterations in Patients With NSCLC and Li-Fraumeni Syndrome. Journal of Thoracic Oncology, 2020, 15, 1232-1239.	0.5	29

#	Article	IF	Citations
37	Circulating Tumor DNA Genomics Reveal Potential Mechanisms of Resistance to BRAF-Targeted Therapies in Patients with∢i>BRAF∢i>-Mutant Metastatic Non–Small Cell Lung Cancer. Clinical Cancer Research, 2020, 26, 6242-6253.	3.2	23
38	Poly(I:C) induces intense expression of c-IAP2 and cooperates with an IAP inhibitor in induction of apoptosis in cancer cells. BMC Cancer, 2010, 10, 327.	1.1	22
39	Therapeutic management of ALK+nonsmall cell lung cancer patients. European Respiratory Journal, 2015, 46, 230-242.	3.1	21
40	Immune checkpoint inhibitors in oncogene-addicted non-small cell lung cancer: a systematic review and meta-analysis. Translational Lung Cancer Research, 2021, 10, 2890-2916.	1.3	21
41	DNA repair deficiency sensitizes lung cancer cells to NAD+ biosynthesis blockade. Journal of Clinical Investigation, 2018, 128, 1671-1687.	3.9	19
42	Feasibility and first reports of the MATCH-R repeated biopsy trial at Gustave Roussy. Npj Precision Oncology, 2020, 4, 27.	2.3	16
43	<p>Profile of entrectinib and its potential in the treatment of ROS1-positive NSCLC: evidence to date</p> . Lung Cancer: Targets and Therapy, 2019, Volume 10, 87-94.	1.3	13
44	Frequency and spectrum of ROS1 resistance mutations in ROS1-positive lung cancer patients progressing on crizotinib Journal of Clinical Oncology, 2016, 34, 9072-9072.	0.8	12
45	Single-cell DNA-seq depicts clonal evolution of multiple driver alterations in osimertinib-resistant patients. Annals of Oncology, 2022, 33, 434-444.	0.6	12
46	Oncogenic Fusions May Be Frequently Present at Resistance of EGFR Tyrosine Kinase InhibitorsÂinÂPatients With NSCLC: A Brief Report. JTO Clinical and Research Reports, 2020, 1, 100023.	0.6	11
47	19q13-ERCC1 Gene Copy Number Increase in Non–Small-Cell Lung Cancer. Clinical Lung Cancer, 2013, 14, 549-557.	1.1	9
48	Crizotinib Primary Resistance Overcome by Ceritinib in a Patient with ALK-Rearranged Non-Small Cell Lung Cancer. Tumori, 2016, 102, S46-S49.	0.6	7
49	A novel antibody-based approach to detect the functional ERCC1-202 isoform. DNA Repair, 2018, 64, 34-44.	1.3	7
50	Lorlatinib in ALK- and ROS1-positive NSCLC: the future has a start. Translational Lung Cancer Research, 2018, 7, S103-S106.	1.3	7
51	MA21.07 Circulating Tumor DNA Analysis Depicts Potential Mechanisms of Resistance to BRAF-Targeted Therapies in BRAF+ Non-Small Cell Lung Cancer. Journal of Thoracic Oncology, 2019, 14, S337.	0.5	3
52	Cellular Interactions in Nasopharyngeal Carcinomas. Advances in Experimental Medicine and Biology, 2013, , 82-100.	0.8	3
53	Evolution of resistance in ALK-positive patients treated with ALK tyrosine kinase inhibitors (TKIs) Journal of Clinical Oncology, 2014, 32, 8031-8031.	0.8	3
54	MA16.09 Feasibility, Clinical Relevance of ALK/ROS1 Fusion Variant Detection by Liquid Biopsy in Advanced Non-Small Cell Lung Cancer. Journal of Thoracic Oncology, 2018, 13, S413-S414.	0.5	2

#	Article	IF	CITATIONS
55	The "Guardian of the Genomeâ€â€"An Old Key to Unlock the ERCC1 Issue. Clinical Cancer Research, 2019, 25, 2369-2371.	3.2	2
56	Abstract 130: PF-06463922, a novel next generation ALK/ROS1 inhibitor, overcomes resistance to 1st and 2nd generation ALK inhibitors in pre-clinical models. , 2015, , .		2
57	MA 11.01 Liquid Biopsies for Monitoring BRAF Mutation (V600E) in Advanced BRAF (V600E) Non-Small Cell Lung Cancer (NSCLC). Journal of Thoracic Oncology, 2017, 12, S1843.	0.5	1
58	P1.01-67 Clinical Relevance of ALK/ROS1 Resistance Mutations and Other Acquired Mutations Detected by Liquid Biopsy in Advanced NSCLC Patients. Journal of Thoracic Oncology, 2018, 13, S487-S488.	0.5	1
59	Preliminary results on mechanisms of resistance to ALK inhibitors: A prospective cohort from the MATCH-R study. Annals of Oncology, 2018, 29, vi21.	0.6	1
60	Abstract 1715: High ALK gene copy number as a predictor of response to crizotinib in non-small cell lung cancer cell lines. , 2012, , .		1
61	288 Synthetic Lethality in ERCC1-deficient Non-Small Cell Lung Cancer. European Journal of Cancer, 2012, 48, 88.	1.3	0
62	NAMPT inhibition is a novel synthetic lethal therapeutic approach exploiting nuclear–mitochondrial crosstalk in ERCC1-deficient populations. European Journal of Cancer, 2016, 69, S56.	1.3	0
63	MATCH-R development of preclinical models from patient with acquired resistance to targeted therapy. Annals of Oncology, 2018, 29, vi11.	0.6	0
64	Therapeutic strategies to overcome ALK resistance in lung cancer., 2021,, 123-139.		0
65	State of the art and future perspectives. , 2021, , 177-190.		0
66	Abstract 3895: Functional characterization of ERCC1 isoforms in NSCLC., 2011, , .		0
67	Abstract 3098: ERCC1 gene copy number variations in resected non-small cell lung cancer. , 2012, , .		0
68	Abstract 957: The ALK inhibitor LDK378 overcomes crizotinib resistance in non-small cell lung cancer. , 2014, , .		0
69	NAMPT inhibition is a novel synthetic lethal therapeutic approach exploiting nuclear-mitochondrial crosstalk in ERCC1-deficient populations Journal of Clinical Oncology, 2017, 35, e23159-e23159.	0.8	0
70	Abstract 1007: SHP2 inhibition restores sensitivity to ALK inhibition in resistant ALK-rearranged non-small cell lung cancer (NSCLC)., 2017,,.		0