Jianyu Li

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2935424/jianyu-li-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

35	4,455	19	37
papers	citations	h-index	g-index
37 ext. papers	5,645 ext. citations	11.5 avg, IF	6.43 L-index

#	Paper	IF	Citations
35	Blood clot behaves as a poro-visco-elastic material <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2022 , 128, 105101	4.1	3
34	Enhanced tendon healing by a tough hydrogel with an adhesive side and high drug-loading capacity <i>Nature Biomedical Engineering</i> , 2022 ,	19	11
33	Injectable, Pore-Forming, Perfusable Double-Network Hydrogels Resilient to Extreme Biomechanical Stimulations. <i>Advanced Science</i> , 2021 , e2102627	13.6	7
32	Reconfiguring confined magnetic colloids with tunable fluid transport behavior. <i>National Science Review</i> , 2021 , 8, nwaa301	10.8	12
31	Bioinspired tough gel sheath for robust and versatile surface functionalization. <i>Science Advances</i> , 2021 , 7,	14.3	17
30	Multifaceted Design and Emerging Applications of Tissue Adhesives. <i>Advanced Materials</i> , 2021 , 33, e200	0 7 663	26
29	Tissue adhesion with tough hydrogels: Experiments and modeling. <i>Mechanics of Materials</i> , 2021 , 157, 103800	3.3	4
28	Stimulation Modulates Adhesion and Mechanics of Hydrogel Adhesives. <i>Langmuir</i> , 2021 , 37, 7097-7106	4	4
27	Ionotronic Tough Adhesives with Intrinsic Multifunctionality. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 37849-37861	9.5	4
26	An Anti-Freezing, Ambient-Stable and Highly Stretchable Ionic Skin with Strong Surface Adhesion for Wearable Sensing and Soft Robotics. <i>Advanced Functional Materials</i> , 2021 , 31, 2104665	15.6	35
25	Fracture mechanics of blood clots: Measurements of toughness and critical length scales. <i>Extreme Mechanics Letters</i> , 2021 , 48, 101444	3.9	5
24	Chitosan nanocrystals synthesis via aging and application towards alginate hydrogels for sustainable drug release. <i>Green Chemistry</i> , 2021 , 23, 6527-6537	10	5
23	Scaling Behavior of Fracture Properties of Tough Adhesive Hydrogels ACS Macro Letters, 2021 , 10, 180	-6&5	6
22	An ambient-stable and stretchable ionic skin with multimodal sensation. <i>Materials Horizons</i> , 2020 , 7, 477-488	14.4	55
21	Interfacial fatigue fracture of tissue adhesive hydrogels. Extreme Mechanics Letters, 2020, 34, 100601	3.9	15
20	Triggered micropore-forming bioprinting of porous viscoelastic hydrogels. <i>Materials Horizons</i> , 2020 , 7, 2336-2347	14.4	25
19	Creating a Comprehensive Research Platform for Surgical Technique and Operative Outcome in Primary Brain Tumor Neurosurgery. <i>World Neurosurgery</i> , 2020 , 144, e62-e71	2.1	5

Design Molecular Topology for Wet-Dry Adhesion. *ACS Applied Materials & Design Molecular Topology* 11, 24892524854

17	Bioinspired mechanically active adhesive dressings to accelerate wound closure. <i>Science Advances</i> , 2019 , 5, eaaw3963	14.3	189
16	Dynamic air/liquid pockets for guiding microscale flow. <i>Nature Communications</i> , 2018 , 9, 733	17.4	40
15	Tough Composite Hydrogels with High Loading and Local Release of Biological Drugs. <i>Advanced Healthcare Materials</i> , 2018 , 7, e1701393	10.1	37
14	Tough adhesives for diverse wet surfaces. <i>Science</i> , 2017 , 357, 378-381	33.3	676
13	Fatigue fracture of hydrogels. Extreme Mechanics Letters, 2017 , 10, 24-31	3.9	100
12	Designing hydrogels for controlled drug delivery. <i>Nature Reviews Materials</i> , 2016 , 1,	73.3	1741
11	Adhesion between highly stretchable materials. <i>Soft Matter</i> , 2016 , 12, 1093-9	3.6	73
10	Click-Crosslinked Injectable Gelatin Hydrogels. Advanced Healthcare Materials, 2016, 5, 541-7	10.1	92
9	A model of ideal elastomeric gels for polyelectrolyte gels. <i>Soft Matter</i> , 2014 , 10, 2582-90	3.6	60
8	Stiff, strong, and tough hydrogels with good chemical stability. <i>Journal of Materials Chemistry B</i> , 2014 , 2, 6708-6713	7.3	230
7	Mechanical behavior of poly(methyl methacrylate)-based ionogels. <i>Soft Matter</i> , 2014 , 10, 7993-8000	3.6	17
6	Hybrid Hydrogels with Extremely High Stiffness and Toughness ACS Macro Letters, 2014, 3, 520-523	6.6	291
5	Mussel-inspired polydopamine: a biocompatible and ultrastable coating for nanoparticles in vivo. <i>ACS Nano</i> , 2013 , 7, 9384-95	16.7	428
4	Experimental determination of equations of state for ideal elastomeric gels. <i>Soft Matter</i> , 2012 , 8, 8121	3.6	69
3	Nanoscale fast relaxation events in polyethylene. <i>Scripta Materialia</i> , 2010 , 62, 488-491	5.6	10
2	Rheological Properties of Aqueous Suspensions of Chitin Crystallites. <i>Journal of Colloid and Interface Science</i> , 1996 , 183, 365-73	9.3	104
1	Hemostatic biomaterials to halt non-compressible hemorrhage. Journal of Materials Chemistry B,	7.3	4