Michael J Wolff

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2935055/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Explaining NOMAD D/H Observations by Cloudâ€Induced Fractionation of Water Vapor on Mars. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	11
2	Removal of straylight from ExoMars NOMAD-UVIS observations. Planetary and Space Science, 2022, 218, 105432.	1.7	3
3	The Emirates Mars Mission. Space Science Reviews, 2022, 218, 4.	8.1	29
4	Vertical Aerosol Distribution and Mesospheric Clouds From ExoMars UVIS. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	6
5	Calibration of the NOMAD-UVIS data. Planetary and Space Science, 2022, 218, 105504.	1.7	5
6	InSight Pressure Data Recalibration, and Its Application to the Study of Longâ€Term Pressure Changes on Mars. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	12
7	The dynamic atmospheric and aeolian environment of Jezero crater, Mars. Science Advances, 2022, 8, .	10.3	47
8	Planetâ€Wide Ozone Destruction in the Middle Atmosphere on Mars During Global Dust Storm. Geophysical Research Letters, 2022, 49, .	4.0	7
9	Another one derives the dust: Ultraviolet dust aerosol properties retrieved from MAVEN/IUVS data. Icarus, 2022, 387, 115177.	2.5	4
10	The Mars 2020 Perseverance Rover Mast Camera Zoom (Mastcam-Z) Multispectral, Stereoscopic Imaging Investigation. Space Science Reviews, 2021, 217, 24.	8.1	76
11	The case for a multi-channel polarization sensitive LIDAR for investigation of insolation-driven ices and atmospheres. , 2021, 53, .		1
12	Measuring Mars Atmospheric Winds from Orbit. , 2021, 53, .		3
13	Mars perihelion cloud trails as revealed by MARCI: Mesoscale topographically focused updrafts and gravity wave forcing of high altitude clouds. Icarus, 2021, 362, 114411.	2.5	9
14	Emirates Mars Mission Characterization of Mars Atmosphere Dynamics and Processes. Space Science Reviews, 2021, 217, .	8.1	23
15	ExoMars TGO/NOMADâ€UVIS Vertical Profiles of Ozone: 2. The Highâ€Altitude Layers of Atmospheric Ozone. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006834.	3.6	14
16	MOSAIC: A Satellite Constellation to Enable Groundbreaking Mars Climate System Science and Prepare for Human Exploration. Planetary Science Journal, 2021, 2, 211.	3.6	6
17	The Emirates Exploration Imager (EXI) Instrument on the Emirates Mars Mission (EMM) Hope Mission. Space Science Reviews, 2021, 217, 1.	8.1	16
18	ExoMars TGO/NOMADâ€UVIS Vertical Profiles of Ozone: 1. Seasonal Variation and Comparison to Water.	3.6	18

#	Article	IF	CITATIONS
19	MARCI observations of a wavenumber-2 large-scale feature in the north polar hood of Mars: Interpretation with the NASA/Ames Legacy Global Climate Model. Icarus, 2020, 335, 113367.	2.5	6
20	Explanation for the Increase in Highâ€Altitude Water on Mars Observed by NOMAD During the 2018 Global Dust Storm. Geophysical Research Letters, 2020, 47, e2019GL084354.	4.0	62
21	Mars's Twilight Cloud Band: A New Cloud Feature Seen During the Mars Year 34 Global Dust Storm. Geophysical Research Letters, 2020, 47, e2019GL084997.	4.0	16
22	Martian Water Ice Clouds During the 2018 Global Dust Storm as Observed by the ACSâ€MIR Channel Onboard the Trace Gas Orbiter. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006300.	3.6	27
23	Mapping water ice clouds on Mars with MRO/MARCI. Icarus, 2019, 332, 24-49.	2.5	45
24	Documentation of the NASA/Ames Legacy Mars Global Climate Model: Simulations of the present seasonal water cycle. Icarus, 2019, 333, 130-164.	2.5	51
25	Martian dust storm impact on atmospheric H2O and D/H observed by ExoMars Trace Gas Orbiter. Nature, 2019, 568, 521-525.	27.8	107
26	The distribution, composition, and particle properties of Mars mesospheric aerosols: An analysis of CRISM visible/near-IR limb spectra with context from near-coincident MCS and MARCI observations. Icarus, 2019, 328, 246-273.	2.5	40
27	Martian dust storm activity near the Mars 2020 candidate landing sites: MRO-MARCI observations from Mars years 28–34. Icarus, 2019, 321, 161-170.	2.5	20
28	NOMAD, an Integrated Suite of Three Spectrometers for the ExoMars Trace Gas Mission: Technical Description, Science Objectives and Expected Performance. Space Science Reviews, 2018, 214, 1.	8.1	95
29	Vertical profiles of Mars 1.27µm O 2 dayglow from MRO CRISM limb spectra: Seasonal/global behaviors, comparisons to LMDGCM simulations, and a global definition for Mars water vapor profiles. Icarus, 2017, 293, 132-156.	2.5	58
30	Seasonal Slumps in Juventae Chasma, Mars. Journal of Geophysical Research E: Planets, 2017, 122, 2193-2214.	3.6	14
31	Mars Clouds. , 2017, , 76-105.		24
32	Radiative Process: Techniques and Applications. , 2017, , 106-171.		21
33	The Mars Dust Cycle. , 2017, , 295-337.		70
34	Endâ€member identification and spectral mixture analysis of CRISM hyperspectral data: A case study on southwest Melas Chasma, Mars. Journal of Geophysical Research E: Planets, 2016, 121, 2004-2036.	3.6	34
35	ON THE COMPOSITION OF YOUNG, DIRECTLY IMAGED GIANT PLANETS. Astrophysical Journal, 2016, 829, 66.	4.5	59
36	Constraints on the composition and particle size of chloride saltâ€bearing deposits on Mars. Journal of Geophysical Research E: Planets, 2016, 121, 454-471.	3.6	50

#	Article	IF	CITATIONS
37	Daily global mapping of Mars ozone column abundances with MARCI UV band imaging. Icarus, 2016, 266, 112-133.	2.5	50
38	Mars Reconnaissance Orbiter and Opportunity observations of the Burns formation: Crater hopping at Meridiani Planum. Journal of Geophysical Research E: Planets, 2015, 120, 429-451.	3.6	30
39	The case for a modern multiwavelength, polarization-sensitive LIDAR in orbit around Mars. Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 153, 131-143.	2.3	69
40	Science objectives and performances of NOMAD, a spectrometer suite for the ExoMars TGO mission. Planetary and Space Science, 2015, 119, 233-249.	1.7	77
41	Dust aerosol, clouds, and the atmospheric optical depth record over 5 Mars years of the Mars Exploration Rover mission. Icarus, 2015, 251, 96-111.	2.5	158
42	The vertical distribution of Martian aerosol particle size. Journal of Geophysical Research E: Planets, 2014, 119, 2694-2708.	3.6	42
43	Ancient Aqueous Environments at Endeavour Crater, Mars. Science, 2014, 343, 1248097.	12.6	176
44	Seasonal melting and the formation of sedimentary rocks on Mars, with predictions for the Gale Crater mound. Icarus, 2013, 223, 181-210.	2.5	95
45	First detection of Mars atmospheric hydroxyl: CRISM Near-IR measurement versus LMD GCM simulation of OH Meinel band emission in the Mars polar winter atmosphere. Icarus, 2013, 226, 272-281.	2.5	54
46	Radiometric comparison of Mars Climate Sounder and Thermal Emission spectrometer measurements. Icarus, 2013, 225, 28-39.	2.5	14
47	Surface scattering properties at the Opportunity Mars rover's traverse region measured by CRISM. Journal of Geophysical Research E: Planets, 2013, 118, 1699-1717.	3.6	15
48	Spectral constraints on the formation mechanism of recurring slope lineae. Geophysical Research Letters, 2013, 40, 5621-5626.	4.0	33
49	Vertical distribution of dust and water ice aerosols from CRISM limbâ€geometry observations. Journal of Geophysical Research E: Planets, 2013, 118, 321-334.	3.6	74
50	Aphelion waterâ€ice cloud mapping and property retrieval using the OMEGA imaging spectrometer onboard Mars Express. Journal of Geophysical Research, 2012, 117, .	3.3	42
51	Extensive MRO CRISM observations of 1.27 <i>î¼</i> m O ₂ airglow in Mars polar night and their comparison to MRO MCS temperature profiles and LMD GCM simulations. Journal of Geophysical Research, 2012, 117, .	3.3	51
52	Lambert albedo retrieval and analyses over Aram Chaos from OMEGA hyperspectral imaging data. Journal of Geophysical Research, 2012, 117, .	3.3	14
53	Opportunity Mars Rover mission: Overview and selected results from Purgatory ripple to traverses to Endeavour crater. Journal of Geophysical Research, 2011, 116, .	3.3	106
54	Revisiting the radiative impact of dust on Mars using the LMD Global Climate Model. Journal of Geophysical Research, 2011, 116, .	3.3	145

#	Article	IF	CITATIONS
55	Ultraviolet dust aerosol properties as observed by MARCI. Icarus, 2010, 208, 143-155.	2.5	81
56	Extension of atmospheric dust loading to high altitudes during the 2001 Mars dust storm: MGS TES limb observations. Icarus, 2010, 207, 98-109.	2.5	87
57	Seasonal ice cycle at the Mars Phoenix landing site: 2. Postlanding CRISM and ground observations. Journal of Geophysical Research, 2010, 115, .	3.3	15
58	An improvement to the volcano-scan algorithm for atmospheric correction of CRISM and OMEGA spectral data. Planetary and Space Science, 2009, 57, 809-815.	1.7	166
59	Thermal structure of the atmospheric boundary layer on Mars based on Miniâ€TES observations. Quarterly Journal of the Royal Meteorological Society, 2009, 135, 1776-1787.	2.7	14
60	Compact Reconnaissance Imaging Spectrometer for Mars investigation and data set from the Mars Reconnaissance Orbiter's primary science phase. Journal of Geophysical Research, 2009, 114, .	3.3	178
61	Mars Reconnaissance Orbiter Mars Color Imager (MARCI): Instrument description, calibration, and performance. Journal of Geophysical Research, 2009, 114, .	3.3	79
62	Valles Marineris cloud trails. Journal of Geophysical Research, 2009, 114, .	3.3	15
63	Wavelength dependence of dust aerosol single scattering albedo as observed by the Compact Reconnaissance Imaging Spectrometer. Journal of Geophysical Research, 2009, 114, .	3.3	196
64	Compact Reconnaissance Imaging Spectrometer observations of water vapor and carbon monoxide. Journal of Geophysical Research, 2009, 114, .	3.3	137
65	Climate, weather, and north polar observations from the Mars Reconnaissance Orbiter Mars Color Imager. Icarus, 2008, 194, 501-512.	2.5	58
66	Mars Exploration Rover Navigation Camera inâ€flight calibration. Journal of Geophysical Research, 2008, 113, .	3.3	12
67	Expected atmospheric environment for the Phoenix landing season and location. Journal of Geophysical Research, 2008, 113, .	3.3	25
68	Geomorphologic and mineralogic characterization of the northern plains of Mars at the Phoenix Mission candidate landing sites. Journal of Geophysical Research, 2008, 113, .	3.3	22
69	Context Camera Investigation on board the Mars Reconnaissance Orbiter. Journal of Geophysical Research, 2007, 112, .	3.3	953
70	CRISM multispectral summary products: Parameterizing mineral diversity on Mars from reflectance. Journal of Geophysical Research, 2007, 112, .	3.3	304
71	Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO). Journal of Geophysical Research, 2007, 112, .	3.3	796
72	Mars equatorial mesospheric clouds: Global occurrence and physical properties from Mars Global Surveyor Thermal Emission Spectrometer and Mars Orbiter Camera limb observations. Journal of Geophysical Research, 2007, 112, .	3.3	66

#	Article	IF	CITATIONS
73	MOC observations of four Mars year variations in the south polar residual cap of Mars. Icarus, 2007, 192, 318-326.	2.5	17
74	Overview of the Opportunity Mars Exploration Rover Mission to Meridiani Planum: Eagle Crater to Purgatory Ripple. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	149
75	Overview of the Spirit Mars Exploration Rover Mission to Gusev Crater: Landing site to Backstay Rock in the Columbia Hills. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	238
76	Chromaticity of the Martian sky as observed by the Mars Exploration Rover Pancam instruments. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	19
77	Nature and origin of the hematite-bearing plains of Terra Meridiani based on analyses of orbital and Mars Exploration rover data sets. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	144
78	One Martian year of atmospheric observations using MER Mini-TES. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	147
79	Constraints on dust aerosols from the Mars Exploration Rovers using MGS overflights and Mini-TES. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	159
80	Spectral Reflectance and Morphologic Correlations in Eastern Terra Meridiani, Mars. Science, 2005, 307, 1591-1594.	12.6	160
81	Application of modern radiative transfer tools to model laboratory quartz emissivity. Journal of Geophysical Research, 2005, 110, n/a-n/a.	3.3	33
82	Atmospheric Imaging Results from the Mars Exploration Rovers: Spirit and Opportunity. Science, 2004, 306, 1753-1756.	12.6	219
83	Mars aerosol studies with the MGS TES emission phase function observations: Optical depths, particle sizes, and ice cloud types versus latitude and solar longitude. Journal of Geophysical Research, 2003, 108, .	3.3	253
84	Constraints on the size of Martian aerosols from Thermal Emission Spectrometer observations. Journal of Geophysical Research, 2003, 108, .	3.3	203
85	Twoâ€dimensional Radiative Transfer in Protostellar Envelopes. I. Effects of Geometry on Class I Sources. Astrophysical Journal, 2003, 591, 1049-1063.	4.5	388
86	Regression of the Mountains of Mitchel polar ice after the onset of a global dust storm on Mars. Geophysical Research Letters, 2002, 29, 13-1.	4.0	23
87	Martian dust storms: 1999 Mars Orbiter Camera observations. Journal of Geophysical Research, 2001, 106, 23653-23687.	3.3	250
88	An intercomparison of ground-based millimeter, MGS TES, and Viking atmospheric temperature measurements: Seasonal and interannual variability of temperatures and dust loading in the global Mars atmosphere. Journal of Geophysical Research, 2000, 105, 9553-9571.	3.3	340
89	Minimal Aerosol Loading and Global Increases in Atmospheric Ozone during the 1996–1997 Martian Northern Spring Season. Icarus, 1999, 138, 49-63	2.5	77
90	North Polar Dust Storms in Early Spring on Mars. Icarus, 1999, 138, 64-73.	2.5	40

#	Article	IF	CITATIONS
91	Hubble Space Telescope observations of the Martian aphelion cloud belt prior to the Pathfinder mission: Seasonal and interannual variations. Journal of Geophysical Research, 1999, 104, 9027-9041.	3.3	71
92	Regression of Martian North Polar Cap: 1990–1997 Hubble Space Telescope Observations. Icarus, 1998, 136, 175-191.	2.5	29
93	Ultraviolet Interstellar Linear Polarization. III. Features. Astrophysical Journal, 1997, 478, 395-402.	4.5	33
94	1995 observations of Martian dust storms using the Hubble Space Telescope. Journal of Geophysical Research, 1997, 102, 1679-1692.	3.3	39
95	Mars ozone measurements near the 1995 aphelion: Hubble space telescope ultraviolet spectroscopy with the faint object spectrograph. Journal of Geophysical Research, 1996, 101, 12777-12783.	3.3	45
96	Global imaging of Mars by Hubble space telescope during the 1995 opposition. Journal of Geophysical Research, 1996, 101, 18883-18890.	3.3	54