Ehsan Farabi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2934941/publications.pdf

Version: 2024-02-01

759233 713466 25 472 12 21 citations h-index g-index papers 25 25 25 338 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Five-parameter intervariant boundary characterization of martensite in commercially pure titanium. Acta Materialia, 2018, 154, 147-160.	7.9	72
2	Flow softening and dynamic recrystallization behavior of BT9 titanium alloy: A study using process map development. Journal of Alloys and Compounds, 2017, 695, 1706-1718.	5.5	69
3	Strain rate dependence of ferrite dynamic restoration mechanism in a duplex low-density steel. Materials and Design, 2017, 132, 360-366.	7.0	30
4	High Temperature Formability Prediction of Dual Phase Brass Using Phenomenological and Physical Constitutive Models. Journal of Materials Engineering and Performance, 2015, 24, 209-220.	2.5	28
5	Rationalization of duplex brass hot deformation behavior: The role of microstructural components. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 641, 360-368.	5.6	24
6	On the grain boundary network characteristics in a martensitic Ti–6Al–4V alloy. Journal of Materials Science, 2020, 55, 15299-15321.	3.7	24
7	Approving Restoration Mechanism in 7075 Aluminum Alloy through Constitutive Flow Behavior Modeling. Advanced Engineering Materials, 2016, 18, 989-1000.	3.5	20
8	On the role of process parameters on meltpool temperature and tensile properties of stainless steel 316L produced by powder bed fusion. Journal of Materials Research and Technology, 2021, 12, 2438-2452.	5.8	20
9	Microstructure evolution of 316L stainless steel during solid-state additive friction stir deposition. Philosophical Magazine, 2022, 102, 618-633.	1.6	20
10	Sandwich structure printing of Ti-Ni-Ti by directed energy deposition. Virtual and Physical Prototyping, 2022, 17, 1006-1030.	10.4	20
11	A comprehensive study on meltpool depth in laser-based powder bed fusion of Inconel 718. International Journal of Advanced Manufacturing Technology, 2022, 120, 2345-2362.	3.0	16
11	A comprehensive study on meltpool depth in laser-based powder bed fusion of Inconel 718. International Journal of Advanced Manufacturing Technology, 2022, 120, 2345-2362. Microstructure and mechanical properties of Ti6Al4V alloys fabricated by additive friction stir deposition. Additive Manufacturing Letters, 2022, 2, 100034.	3.0	16 15
	International Journal of Advanced Manufacturing Technology, 2022, 120, 2345-2362. Microstructure and mechanical properties of Ti6Al4V alloys fabricated by additive friction stir		
12	International Journal of Advanced Manufacturing Technology, 2022, 120, 2345-2362. Microstructure and mechanical properties of Ti6Al4V alloys fabricated by additive friction stir deposition. Additive Manufacturing Letters, 2022, 2, 100034. Effect of pre-deformation mode on the microstructures and mechanical properties of Hadfield steel. Materials Science & Structural Materials: Properties, Microstructure and	2.1	15
12	International Journal of Advanced Manufacturing Technology, 2022, 120, 2345-2362. Microstructure and mechanical properties of Ti6Al4V alloys fabricated by additive friction stir deposition. Additive Manufacturing Letters, 2022, 2, 100034. Effect of pre-deformation mode on the microstructures and mechanical properties of Hadfield steel. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2019, 743, 251-258. Outstanding Mild Wear Performance of Ti–29Nb–14Ta–4.5Zr Alloy Through Subsurface Grain Refinement and Supporting Effect of Transformation Induced Plasticity. Metals and Materials	2.1 5.6	15
12 13 14	International Journal of Advanced Manufacturing Technology, 2022, 120, 2345-2362. Microstructure and mechanical properties of Ti6Al4V alloys fabricated by additive friction stir deposition. Additive Manufacturing Letters, 2022, 2, 100034. Effect of pre-deformation mode on the microstructures and mechanical properties of Hadfield steel. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2019, 743, 251-258. Outstanding Mild Wear Performance of Ti–29Nb–14Ta–4.5Zr Alloy Through Subsurface Grain Refinement and Supporting Effect of Transformation Induced Plasticity. Metals and Materials International, 2020, 26, 467-476. Processing Map Development through Elaborating Phenomenological and Physical Constitutive Based	2.1 5.6 3.4	15 13 13
12 13 14	International Journal of Advanced Manufacturing Technology, 2022, 120, 2345-2362. Microstructure and mechanical properties of Ti6Al4V alloys fabricated by additive friction stir deposition. Additive Manufacturing Letters, 2022, 2, 100034. Effect of pre-deformation mode on the microstructures and mechanical properties of Hadfield steel. Materials Science & Deformed A: Structural Materials: Properties, Microstructure and Processing, 2019, 743, 251-258. Outstanding Mild Wear Performance of Ti–29Nb–14Ta–4.5Zr Alloy Through Subsurface Grain Refinement and Supporting Effect of Transformation Induced Plasticity. Metals and Materials International, 2020, 26, 467-476. Processing Map Development through Elaborating Phenomenological and Physical Constitutive Based Models. Advanced Engineering Materials, 2016, 18, 572-581. Grain Refinement through Shear Banding in Severely Plastic Deformed A206 Aluminum Alloy. Advanced	2.1 5.6 3.4	15 13 13

#	Article	IF	CITATION
19	Effect of manganese on the grain boundary network of lath martensite in precipitation hardenable stainless steels. Journal of Alloys and Compounds, 2021, 886, 161333.	5.5	9
20	Development of high strength and ductile Zn-Al-Li alloys for potential use in bioresorbable medical devices. Materials Science and Engineering C, 2021, 122, 111897.	7.3	8
21	Development of New Third-Generation Medium Manganese Advanced High-Strength Steels Elaborating Hot-Rolling and Intercritical Annealing. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 4261-4274.	2.2	7
22	A comprehensive investigation of abrasive barrel finishing on hardness and manufacturability of laser-based powder bed fusion hollow components. International Journal of Advanced Manufacturing Technology, 2022, 120, 3471-3490.	3.0	7
23	The role of thermomechanical processing routes on the grain boundary network of martensite in Ti–6Al–4V. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 822, 141665.	5 . 6	5
24	Novel Biodegradable Zn Alloy with Exceptional Mechanical and In Vitro Corrosion Properties for Biomedical Applications. ACS Biomaterials Science and Engineering, 2021, 7, 5555-5572.	5. 2	5
25	Throughput study of diffusion along the twin boundaries in Mg-5Sn-0.3Li as-cast alloy and its effect on the homogenization during hot deformation. Materials Letters, 2020, 281, 128446.	2.6	2