
Timothy Y James

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2933042/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A higher-level phylogenetic classification of the Fungi. Mycological Research, 2007, 111, 509-547.	2.5	1,994
2	Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature, 2006, 443, 818-822.	27.8	1,625
3	The New Higher Level Classification of Eukaryotes with Emphasis on the Taxonomy of Protists. Journal of Eukaryotic Microbiology, 2005, 52, 399-451.	1.7	1,476
4	A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia, 2016, 108, 1028-1046.	1.9	1,092
5	Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes. Journal of Eukaryotic Microbiology, 2019, 66, 4-119.	1.7	904
6	Assembling the fungal tree of life: progress, classification, and evolution of subcellular traits. American Journal of Botany, 2004, 91, 1446-1480.	1.7	718
7	Insights into evolution of multicellular fungi from the assembled chromosomes of the mushroom <i>Coprinopsis cinerea</i> (<i>Coprinus cinereus</i>). Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11889-11894.	7.1	389
8	Recent Asian origin of chytrid fungi causing global amphibian declines. Science, 2018, 360, 621-627.	12.6	389
9	A molecular phylogeny of the flagellated fungi (Chytridiomycota) and description of a new phylum (Blastocladiomycota). Mycologia, 2006, 98, 860-871.	1.9	357
10	Amphibian Pathogen Batrachochytrium dendrobatidis Is Inhibited by the Cutaneous Bacteria of Amphibian Species. EcoHealth, 2006, 3, 53-56.	2.0	293
11	Widespread adenine N6-methylation of active genes in fungi. Nature Genetics, 2017, 49, 964-968.	21.4	292
12	Shared Signatures of Parasitism and Phylogenomics Unite Cryptomycota and Microsporidia. Current Biology, 2013, 23, 1548-1553.	3.9	290
13	The Fungi. Current Biology, 2009, 19, R840-R845.	3.9	279
14	Archaeorhizomycetes: Unearthing an Ancient Class of Ubiquitous Soil Fungi. Science, 2011, 333, 876-879.	12.6	249
15	Multilocus sequence typing suggests the chytrid pathogen of amphibians is a recently emerged clone. Molecular Ecology, 2003, 12, 395-403.	3.9	244
16	Complex history of the amphibian-killing chytrid fungus revealed with genome resequencing data. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9385-9390.	7.1	238
17	Novel, panzootic and hybrid genotypes of amphibian chytridiomycosis associated with the bullfrog trade. Molecular Ecology, 2012, 21, 5162-5177.	3.9	227
18	A molecular phylogeny of the flagellated fungi (Chytridiomycota) and description of a new phylum (Blastocladiomycota). Mycologia, 2006, 98, 860-871.	1.9	224

#	Article	IF	CITATIONS
19	Insight into tradeâ€off between wood decay and parasitism from the genome of a fungal forest pathogen. New Phytologist, 2012, 194, 1001-1013.	7.3	210
20	Disentangling host, pathogen, and environmental determinants of a recently emerged wildlife disease: lessons from the first 15Âyears of amphibian chytridiomycosis research. Ecology and Evolution, 2015, 5, 4079-4097.	1.9	191
21	Contemporaneous radiations of fungi and plants linked to symbiosis. Nature Communications, 2018, 9, 5451.	12.8	189
22	Rapid Global Expansion of the Fungal Disease Chytridiomycosis into Declining and Healthy Amphibian Populations. PLoS Pathogens, 2009, 5, e1000458.	4.7	186
23	Discovery of dark matter fungi in aquatic ecosystems demands a reappraisal of the phylogeny and ecology of zoosporic fungi. Fungal Ecology, 2016, 19, 28-38.	1.6	183
24	A genome-scale phylogeny of the kingdom Fungi. Current Biology, 2021, 31, 1653-1665.e5.	3.9	170
25	Toward a Fully Resolved Fungal Tree of Life. Annual Review of Microbiology, 2020, 74, 291-313.	7.3	156
26	Novel soil-inhabiting clades fill gaps in the fungal tree of life. Microbiome, 2017, 5, 42.	11.1	152
27	Early Diverging Fungi: Diversity and Impact at the Dawn of Terrestrial Life. Annual Review of Microbiology, 2017, 71, 41-60.	7.3	151
28	The frequency of sex in fungi. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150540.	4.0	147
29	Exploring the role of ectomycorrhizal fungi in soil carbon dynamics. New Phytologist, 2019, 223, 33-39.	7.3	147
30	Phylogeny of the Zygomycota based on nuclear ribosomal sequence data. Mycologia, 2006, 98, 872-884.	1.9	146
31	Evolution of fungal sexual reproduction. Mycologia, 2013, 105, 1-27.	1.9	133
32	Phylogeny of the Zygomycota based on nuclear ribosomal sequence data. Mycologia, 2006, 98, 872-884.	1.9	129
33	Molecular phylogenetics of the Chytridiomycota supports the utility of ultrastructural data in chytrid systematics. Canadian Journal of Botany, 2000, 78, 336-350.	1.1	124
34	Fungal Diversity Revisited: 2.2 to 3.8 Million Species. , 0, , 79-95.		122
35	Isolation and characterization of a novel chytrid species (phylum Blastocladiomycota), parasitic on the green alga Haematococcus. Mycological Research, 2008, 112, 70-81.	2.5	121
36	Evolution of the Bipolar Mating System of the Mushroom Coprinellus disseminatus From Its Tetrapolar Ancestors Involves Loss of Mating-Type-Specific Pheromone Receptor Function. Genetics, 2006, 172, 1877-1891.	2.9	115

3

#	Article	IF	CITATIONS
37	Invasive pathogens threaten species recovery programs. Current Biology, 2008, 18, R853-R854.	3.9	113
38	Evolution of a morphological novelty occurred before genome compaction in a lineage of extreme parasites. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15480-15485.	7.1	111
39	Polymorphism at the Ribosomal DNA Spacers and Its Relation to Breeding Structure of the Widespread Mushroom <i>Schizophyllum commune</i> . Genetics, 2001, 157, 149-161.	2.9	109
40	Leveraging single-cell genomics to expand the fungal tree of life. Nature Microbiology, 2018, 3, 1417-1428.	13.3	101
41	Diversity of cytosine methylation across the fungal tree of life. Nature Ecology and Evolution, 2019, 3, 479-490.	7.8	98
42	EVIDENCE FOR LIMITED INTERCONTINENTAL GENE FLOW IN THE COSMOPOLITAN MUSHROOM, <i>SCHIZOPHYLLUM COMMUNE</i> . Evolution; International Journal of Organic Evolution, 1999, 53, 1665-1677.	2.3	96
43	Genomic innovations linked to infection strategies across emerging pathogenic chytrid fungi. Nature Communications, 2017, 8, 14742.	12.8	96
44	Lobulomycetales, a new order in the Chytridiomycota. Mycological Research, 2009, 113, 450-460.	2.5	92
45	Marine fungi. Current Biology, 2019, 29, R191-R195.	3.9	88
46	EVOLUTIONARY SIGNIFICANCE OF IMBALANCED NUCLEAR RATIOS WITHIN HETEROKARYONS OF THE BASIDIOMYCETE FUNGUS <i>HETEROBASIDION PARVIPORUM</i> . Evolution; International Journal of Organic Evolution, 2008, 62, 2279-2296.	2.3	84
47	Amphibianâ€killing chytrid in <scp>B</scp> razil comprises both locally endemic and globally expanding populations. Molecular Ecology, 2016, 25, 2978-2996.	3.9	82
48	6 Mating Type in Basidiomycetes: Unipolar, Bipolar, and Tetrapolar Patterns of Sexuality. , 2011, , 97-160.		81
49	Friend or foe? Evolutionary history of glycoside hydrolase family 32 genes encoding for sucrolytic activity in fungi and its implications for plant-fungal symbioses. BMC Evolutionary Biology, 2009, 9, 148.	3.2	77
50	No jacket required – new fungal lineage defies dress code. BioEssays, 2012, 34, 94-102.	2.5	77
51	Molecular phylogenetics of the Chytridiomycota supports the utility of ultrastructural data in chytrid systematics. Canadian Journal of Botany, 2000, 78, 336-350.	1.1	76
52	The genetic structure and diversity of the A and B mating-type genes from the tropical oyster mushroom, Pleurotus djamor. Fungal Genetics and Biology, 2004, 41, 813-825.	2.1	75
53	The Fungal Cell Wall: Structure, Biosynthesis, and Function. , 0, , 267-292.		65
54	The genome of an intranuclear parasite, Paramicrosporidium saccamoebae, reveals alternative adaptations to obligate intracellular parasitism. ELife, 2017, 6, .	6.0	63

#	Article	IF	CITATIONS
55	Necrotrophic Mycoparasites and Their Genomes. , 0, , 1005-1026.		62
56	Surveying the biodiversity of the Cryptomycota using a targeted PCR approach. Fungal Ecology, 2015, 14, 62-70.	1.6	61
57	Abundance and diversity of <i>Schizophyllum commune</i> spore clouds in the Caribbean detected by selective sampling. Molecular Ecology, 2001, 10, 471-479.	3.9	60
58	Psychoactive plant- and mushroom-associated alkaloids from two behavior modifying cicada pathogens. Fungal Ecology, 2019, 41, 147-164.	1.6	55
59	Identification of Putative Coffee Rust Mycoparasites via Single-Molecule DNA Sequencing of Infected Pustules. Applied and Environmental Microbiology, 2016, 82, 631-639.	3.1	54
60	Comparative Genomics of the Mating-Type Loci of the Mushroom Flammulina velutipes Reveals Widespread Synteny and Recent Inversions. PLoS ONE, 2011, 6, e22249.	2.5	54
61	Genome sequencing provides insight into the reproductive biology, nutritional mode and ploidy of the fern pathogen <i><scp>M</scp>ixia osmundae</i> . New Phytologist, 2014, 202, 554-564.	7.3	52
62	Evolution of the gene encoding mitochondrial intermediate peptidase and its cosegregation with the A mating-type locus of mushroom fungi. Fungal Genetics and Biology, 2004, 41, 381-390.	2.1	51
63	Variation in phenotype and virulence among enzootic and panzootic amphibian chytrid lineages. Fungal Ecology, 2017, 26, 45-50.	1.6	51
64	A Single Mating-Type Locus Composed of Homeodomain Genes Promotes Nuclear Migration and Heterokaryosis in the White-Rot Fungus Phanerochaete chrysosporium. Eukaryotic Cell, 2011, 10, 249-261.	3.4	49
65	Archaeorhizomyces borealis sp. nov. and a sequence-based classification of related soil fungal species. Fungal Biology, 2014, 118, 943-955.	2.5	48
66	Why mushrooms have evolved to be so promiscuous: Insights from evolutionary and ecological patterns. Fungal Biology Reviews, 2015, 29, 167-178.	4.7	47
67	Low resistance to chytridiomycosis in direct-developing amphibians. Scientific Reports, 2017, 7, 16605.	3.3	43
68	Polyporales genomes reveal the genetic architecture underlying tetrapolar and bipolar mating systems. Mycologia, 2013, 105, 1374-1390.	1.9	42
69	Extraordinary Genetic Diversity in a Wood Decay Mushroom. Molecular Biology and Evolution, 2015, 32, 2775-2783.	8.9	42
70	The Identification of Phytohormone Receptor Homologs in Early Diverging Fungi Suggests a Role for Plant Sensing in Land Colonization by Fungi. MBio, 2017, 8, .	4.1	41
71	Adaptation by Loss of Heterozygosity in <i>Saccharomyces cerevisiae</i> Clones Under Divergent Selection. Genetics, 2019, 213, 665-683.	2.9	38
72	Morphological, molecular, and ultrastructural characterization of Rozella rhizoclosmatii, a new species in Cryptomycota. Fungal Biology, 2017, 121, 1-10.	2.5	35

#	Article	IF	CITATIONS
73	Early-diverging fungal phyla: taxonomy, species concept, ecology, distribution, anthropogenic impact, and novel phylogenetic proposals. Fungal Diversity, 2021, 109, 59-98.	12.3	35
74	Fungarium specimens: a largely untapped source in global change biology and beyond. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20170392.	4.0	34
75	Mycoviruses. Current Biology, 2022, 32, R150-R155.	3.9	33
76	Repeat-Induced Point Mutation and Other Genome Defense Mechanisms in Fungi. , 0, , 687-699.		32
77	Hybridization Facilitates Adaptive Evolution in Two Major Fungal Pathogens. Genes, 2020, 11, 101.	2.4	32
78	Morphology, Ultrastructure, and Molecular Phylogeny of <i>Rozella multimorpha</i> , a New Species in Cryptomycota. Journal of Eukaryotic Microbiology, 2018, 65, 180-190.	1.7	31
79	Long-Term Habitat Fragmentation Is Associated With Reduced MHC IIB Diversity and Increased Infections in Amphibian Hosts. Frontiers in Ecology and Evolution, 2019, 6, .	2.2	31
80	Extensive Trans-Specific Polymorphism at the Mating Type Locus of the Root Decay Fungus Heterobasidion. Molecular Biology and Evolution, 2013, 30, 2286-2301.	8.9	29
81	Fungal Genomes and Insights into the Evolution of the Kingdom. , 0, , 619-633.		29
82	The chromosomal region containing pab-1, mip , and the A mating type locus of the secondarily homothallic homobasidiomycete Coprinus bilanatus. Current Genetics, 2001, 39, 16-24.	1.7	27
83	Long-Distance Dispersal of Fungi. , 0, , 309-333.		27
84	Bullfrog farms release virulent zoospores of the frog-killing fungus into the natural environment. Scientific Reports, 2019, 9, 13422.	3.3	27
85	Ultrastructural characterization of the host–parasite interface between Allomyces anomalus (Blastocladiomycota) and Rozella allomycis (Cryptomycota). Fungal Biology, 2017, 121, 561-572.	2.5	26
86	Phylogenetic taxon definitions for Fungi, Dikarya, Ascomycota and Basidiomycota. IMA Fungus, 2018, 9, 291-298.	3.8	26
87	Genome-scale phylogenetics reveals a monophyletic Zoopagales (Zoopagomycota, Fungi). Molecular Phylogenetics and Evolution, 2019, 133, 152-163.	2.7	26
88	Local phenotypic variation in amphibian-killing fungus predicts infection dynamics. Fungal Ecology, 2016, 20, 15-21.	1.6	25
89	The Fungal Tree of Life: From Molecular Systematics to Genome-Scale Phylogenies. , 2017, , 1-34.		25

90 Biologically Active Secondary Metabolites from the Fungi. , 0, , 1087-1119.

#	Article	IF	CITATIONS
91	Amphibian chytrid infection is influenced by rainfall seasonality and water availability. Diseases of Aquatic Organisms, 2018, 127, 107-115.	1.0	25
92	Development and worldwide use of non-lethal, and minimal population-level impact, protocols for the isolation of amphibian chytrid fungi. Scientific Reports, 2018, 8, 7772.	3.3	24
93	Monoblepharidomycetes diversity includes new parasitic and saprotrophic species with highly intronized rDNA. Fungal Biology, 2017, 121, 729-741.	2.5	23
94	Biotic and abiotic determinants of Batrachochytrium dendrobatidis infections in amphibians of the Brazilian Atlantic Forest. Fungal Ecology, 2021, 49, 100995.	1.6	23
95	Trikaryon formation and nuclear selection in pairings between heterokaryons and homokaryons of the root rot pathogen Heterobasidion parviporum. Mycological Research, 2009, 113, 583-590.	2.5	22
96	<i>Paraphysoderma sedebokerense</i> , gen. et sp. nov., an aplanosporic relative of <i>Physoderma</i> (<i>Blastocladiomycota</i>). Mycotaxon, 2012, 118, 177-180.	0.3	22
97	7 Blastocladiomycota. , 2014, , 177-207.		22
98	Plant Pathogenic Fungi. , 2017, , 701-726.		22
99	Diverse genotypes of the amphibianâ€killing fungus produce distinct phenotypes through plastic responses to temperature. Journal of Evolutionary Biology, 2019, 32, 287-298.	1.7	22
100	The Collection of Zoosporic Eufungi at the University of Michigan (CZEUM): introducing a new repository of barcoded Chytridiomyceta and Blastocladiomycota cultures. IMA Fungus, 2020, 11, 20.	3.8	22
101	The pab1 gene of Coprinus cinereus encodes a bifunctional protein for para-aminobenzoic acid (PABA) synthesis: implications for the evolution of fused PABA synthases. Journal of Basic Microbiology, 2002, 42, 91.	3.3	21
102	Crossing-Over in a Hypervariable Species Preferentially Occurs in Regions of High Local Similarity. Molecular Biology and Evolution, 2014, 31, 3016-3025.	8.9	20
103	Ecology, Virulence, and Phylogeny of Blastulidium paedophthorum, a Widespread Brood Parasite of Daphnia spp. Applied and Environmental Microbiology, 2015, 81, 5486-5496.	3.1	20
104	Fungal Sex: The Basidiomycota. , 0, , 147-175.		20
105	Mitochondrial inheritance in haploidÂ×Ânon-haploid crosses in Cryptococcus neoformans. Current Genetics, 2010, 56, 163-176.	1.7	19
106	Globally invasive genotypes of the amphibian chytrid outcompete an enzootic lineage in coinfections. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20181894.	2.6	19
107	Skin microbiome correlates with bioclimate and Batrachochytrium dendrobatidis infection intensity in Brazil's Atlantic Forest treefrogs. Scientific Reports, 2020, 10, 22311.	3.3	19
108	<i>Homolaphlyctis polyrhiza</i> gen. et sp. nov., a species in the <i>Rhizophydiales</i> (<i>Chytridiomycetes</i>) with multiple rhizoidal axes. Mycotaxon, 2012, 118, 433-440.	0.3	17

#	Article	lF	CITATIONS
109	The mycorrhizal status of Pseudotulostoma volvata (Elaphomycetaceae, Eurotiales, Ascomycota). Mycorrhiza, 2006, 16, 241-244.	2.8	16
110	Future Perspectives and Challenges of Fungal Systematics in the Age of Big Data. Fungal Biology, 2016, , 25-46.	0.6	16
111	Comparative pathogenicity of opportunistic black yeasts in <i>Aureobasidium</i> . Mycoses, 2019, 62, 803-811.	4.0	16
112	Cell Biology of Hyphal Growth. , 0, , 231-265.		15
113	The Mycelium as a Network. , 0, , 335-367.		15
114	Microsporidia: Obligate Intracellular Pathogens Within the Fungal Kingdom. , 0, , 97-113.		15
115	Aquastella gen. nov.: A new genus of saprolegniaceous oomycete rotifer parasites related to Aphanomyces, with unique sporangial outgrowths. Fungal Biology, 2014, 118, 544-558.	2.5	14
116	Mating-type genes of the anamorphic fungus Ulocladium botrytis affect both asexual sporulation and sexual reproduction. Scientific Reports, 2017, 7, 7932.	3.3	14
117	Fungal Ecology: Principles and Mechanisms of Colonization and Competition by Saprotrophic Fungi. , 0, , 293-308.		14
118	A new oomycete species parasitic in nematodes, Chlamydomyzium dictyuchoides sp. nov.: Developmental biology and phylogenetic studies. Fungal Biology, 2014, 118, 527-543.	2.5	13
119	Antifungal Drugs: The Current Armamentarium and Development of New Agents. , 0, , 903-922.		13
120	Novel taxa in Cladochytriales (Chytridiomycota): <i>Karlingiella</i> (gen. nov.) and <i>Nowakowskiella crenulata</i> (sp. nov.). Mycologia, 2019, 111, 506-516.	1.9	13
121	Chemical Similarity of Co-occurring Trees Decreases With Precipitation and Temperature in North American Forests. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	13
122	Large-scale fungal strain sequencing unravels the molecular diversity in mating loci maintained by long-term balancing selection. PLoS Genetics, 2022, 18, e1010097.	3.5	12
123	Rethinking the role of invertebrate hosts in the life cycle of the amphibian chytridiomycosis pathogen. Parasitology, 2016, 143, 1723-1729.	1.5	11
124	Genome-Wide Screen for <i>Saccharomyces cerevisiae</i> Genes Contributing to Opportunistic Pathogenicity in an Invertebrate Model Host. G3: Genes, Genomes, Genetics, 2018, 8, 63-78.	1.8	11
125	Genotypic variation in an ecologically important parasite is associated with host species, lake and spore size. Parasitology, 2021, 148, 1303-1312.	1.5	11
126	Geography, Host Genetics, and Crossâ€Domain Microbial Networks Structure the Skin Microbiota of Fragmented Brazilian Atlantic Forest Frog Populations. Ecology and Evolution, 2021, 11, 9293-9307.	1.9	11

#	Article	IF	CITATIONS
127	Analysis of Mating-Type Locus Organization and Synteny in Mushroom Fungi: Beyond Model Species. , 0, , 317-331.		11
128	Six Key Traits of Fungi: Their Evolutionary Origins and Genetic Bases. , 2017, , 35-56.		10
129	Widespread chytrid infection across frogs in the Peruvian Amazon suggests critical role for low elevation in pathogen spread and persistence. PLoS ONE, 2019, 14, e0222718.	2.5	10
130	Stress Adaptation. , 0, , 463-485.		9
131	Made for Each Other: Ascomycete Yeasts and Insects. , 0, , 945-962.		9
132	Ploidy Variation in Fungi: Polyploidy, Aneuploidy, and Genome Evolution. , 0, , 599-618.		9
133	Molecular Mechanisms Regulating Cell Fusion and Heterokaryon Formation in Filamentous Fungi. , 2017, , 215-229.		9
134	Fungi as a Source of Food. , 0, , 1063-1085.		9
135	Making Time: Conservation of Biological Clocks from Fungi to Animals. , 2017, , 515-534.		8
136	Fungi that Infect Humans. , 2017, , 811-843.		8
137	Sex and the Imperfect Fungi. , 0, , 193-214.		8
138	A new 18S rRNA phylogeny of uncultured predacious fungi (Zoopagales). Mycologia, 2019, 111, 291-298.	1.9	8
139	<i>Quaeritorhiza haematococci</i> is a new species of parasitic chytrid of the commercially grown alga, <i>Haematococcus pluvialis</i> . Mycologia, 2020, 112, 606-615.	1.9	8
140	Chytrid Pathogen (Batrachochytrium dendrobatidis) in African Amphibians: A Continental Analysis of Occurrences and Modeling of Its Potential Distribution. Herpetologica, 2020, 76, 201.	0.4	8
141	Habitat fragmentation in the Brazilian Atlantic Forest is associated with erosion of frog immunogenetic diversity and increased fungal infections. Immunogenetics, 2022, 74, 431-441.	2.4	8
142	A single-cell genomics pipeline for environmental microbial eukaryotes. IScience, 2021, 24, 102290.	4.1	7
143	Sex in the Rest: Mysterious Mating in the Chytridiomycota and Zygomycota. , 0, , 405-418.		7

#	Article	IF	CITATIONS
145	First report of the post-fire morel <i>Morchella exuberans</i> in eastern North America. Mycologia, 2017, 109, 1-5.	1.9	6
146	What Defines the "Kingdom―Fungi?. , 2017, , 57-77.		6
147	The Mutualistic Interaction between Plants and Arbuscular Mycorrhizal Fungi. , 0, , 727-747.		6
148	Bacterial Endosymbionts: Master Modulators of Fungal Phenotypes. , 2017, , 981-1004.		6
149	Emerging Fungal Threats to Plants and Animals Challenge Agriculture and Ecosystem Resilience. , 0, , 787-809.		6
150	Fungal Biofilms: Inside Out. , 2017, , 873-886.		6
151	Relationship between saccharifying capacity and isolation sources for strains of the Rhizopus arrhizus complex. Mycoscience, 2018, 59, 409-414.	0.8	6
152	Skin Fungi from Colonization to Infection. , 0, , 855-871.		6
153	Genetic analysis of postâ€epizootic amphibian chytrid strains in Bolivia: Adding a piece to the puzzle. Transboundary and Emerging Diseases, 2020, 67, 2163.	3.0	5
154	<i>Polyrhizophydium stewartii</i> , the first known rhizomycelial genus and species in the Rhizophydiales, is closely related to <i>Batrachochytrium</i> . Mycologia, 2021, 113, 684-690.	1.9	5
155	Fine-scale spatial genetic structure of a fungal parasite of coffee scale insects. Journal of Invertebrate Pathology, 2016, 139, 34-41.	3.2	4
156	Description ofBifiguratus adelaidae: The hunt ends for one of the "Top 50 Most Wanted Fungi― Mycologia, 2017, 109, 361-362.	1.9	4
157	Fungal Sex: The <i>Ascomycota</i> . , 0, , 115-145.		4
158	Nutrient Sensing at the Plasma Membrane of Fungal Cells. , 2017, , 417-439.		4
159	Nematode-Trapping Fungi. , 2017, , 963-974.		4
160	Impacts of experimentally accelerated forest succession on belowground plant and fungal communities. Soil Biology and Biochemistry, 2018, 125, 44-53.	8.8	4
161	Fungal Sex: The Mucoromycota. , 2017, , 177-191.		3
162	Sources of Fungal Genetic Variation and Associating It with Phenotypic Diversity. , 0, , 635-655.		3

#	Article	IF	CITATIONS
163	RNA Interference in Fungi: Retention and Loss. , 0, , 657-671.		3
164	The Mycobiome: Impact on Health and Disease States. , 2017, , 845-854.		3
165	Fungal Enzymes and Yeasts for Conversion of Plant Biomass to Bioenergy and High-Value Products. , 2017, , 1027-1048.		3
166	Clonal evolution in serially passaged <i>Cryptococcus neoformans</i> × <i>deneoformans</i> hybrids reveals a heterogenous landscape of genomic change. Genetics, 2022, 220, .	2.9	3
167	Evolution and Physiology of Amphibious Yeasts. Annual Review of Microbiology, 2021, 75, 337-357.	7.3	3
168	Ecology of Fungal Plant Pathogens. , 0, , 387-397.		3
169	Fungal community dynamics associated with harmful cyanobacterial blooms in two Great Lakes. Journal of Great Lakes Research, 2022, 48, 1021-1031.	1.9	3
170	Melanin, Radiation, and Energy Transduction in Fungi. , 0, , 509-514.		2
171	Host-Microsporidia Interactions in Caenorhabditis elegans, a Model Nematode Host. , 2017, , 975-980.		2
172	Fungal Ligninolytic Enzymes and Their Applications. , 2017, , 1049-1061.		2
173	Target of Rapamycin (TOR) Regulates Growth in Response to Nutritional Signals. , 0, , 535-548.		2
174	SCGid: a consensus approach to contig filtering and genome prediction from single-cell sequencing libraries of uncultured eukaryotes. Bioinformatics, 2020, 36, 1994-2000.	4.1	2
175	Phytochytrium and Sparrowiella, two new polycentric genera in Cladochytriales. Mycological Progress, 2022, 21, 1.	1.4	2
176	The Geomycology of Elemental Cycling and Transformations in the Environment. , 2017, , 369-386.		1
177	Key Ecological Roles for Zoosporic True Fungi in Aquatic Habitats. , 2017, , 399-416.		1
178	Fungal Recognition and Host Defense Mechanisms. , 2017, , 887-902.		1
179	On a Special Collection in MMBR on Sex in Fungi: Molecular Mechanisms and Evolutionary Implications. Microbiology and Molecular Biology Reviews, 2021, 85, e0009421.	6.6	1
180	Amphibian Chytridiomycosis as an Emerging Infectious Disease of Wildlife: What Can We Learn from the Earliest Diverging Fungi?. , 0, , 271-278.		1

#	Article	IF	CITATIONS
181	Lichenized Fungi and the Evolution of Symbiotic Organization. , 0, , 749-765.		1
182	Fungal Plant Pathogenesis Mediated by Effectors. , 0, , 767-785.		1
183	Protocol for single-cell isolation and genome amplification of environmental microbial eukaryotes for genomic analysis. STAR Protocols, 2022, 3, 100968.	1.2	1
184	Fungal Cell Cycle: A Unicellular versus Multicellular Comparison. , 2017, , 549-570.		0
185	The Complexity of Fungal Vision. , 2017, , 441-461.		Ο
186	Thigmo Responses: The Fungal Sense of Touch. , 2017, , 487-507.		0
187	Amyloid Prions in Fungi. , 2017, , 673-685.		Ο
188	The age of yeast. Current Biology, 2018, 28, R853-R854.	3.9	0
189	A Matter of Scale and Dimensions: Chromatin of Chromosome Landmarks in the Fungi. , 0, , 571-597.		Ο
190	Paraphysoderma sedebokerense GlnS III Is Essential for the Infection of Its Host Haematococcus lacustris. Journal of Fungi (Basel, Switzerland), 2022, 8, 561.	3.5	0