Xiaodan Gu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2932939/publications.pdf

Version: 2024-02-01

45213 46918 8,668 116 47 90 citations h-index g-index papers 118 118 118 8307 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	<scp>Waterâ€assisted</scp> mechanical testing of polymeric <scp>thinâ€films</scp> . Journal of Polymer Science, 2022, 60, 1108-1129.	2.0	23
2	How rigid are conjugated nonâ€ladder and ladder polymers?. Journal of Polymer Science, 2022, 60, 298-310.	2.0	23
3	Tuning Conjugated Polymer Chain Packing for Stretchable Semiconductors. Advanced Materials, 2022, 34, e2104747.	11.1	47
4	Backbone flexibility on conjugated polymer's crystallization behavior and thin film mechanical stability. Journal of Polymer Science, 2022, 60, 548-558.	2.0	7
5	From Chlorinated Solvents to Branched Polyethylene: Solventâ€Induced Phase Separation for the Greener Processing of Semiconducting Polymers. Advanced Electronic Materials, 2022, 8, 2100928.	2.6	3
6	Backbone-driven host–dopant miscibility modulates molecular doping in NDI conjugated polymers. Materials Horizons, 2022, 9, 500-508.	6.4	8
7	Revealing the Role of Polaron Distribution on the Performance of n-Type Organic Electrochemical Transistors. Chemistry of Materials, 2022, 34, 864-872.	3.2	23
8	Conjugated Polymerâ€Wrapped Singleâ€Wall Carbon Nanotubes for Highâ€Mobility Photonic/Electrical Fully Modulated Synaptic Transistor. Advanced Materials Technologies, 2022, 7, .	3.0	14
9	FAPbl ₃ Perovskite Films Prepared by Solvent Self-Volatilization for Photovoltaic Applications. ACS Applied Energy Materials, 2022, 5, 1487-1495.	2.5	18
10	Variable-Temperature Scattering and Spectroscopy Characterizations for Temperature-Dependent Solution Assembly of PffBT4T-Based Conjugated Polymers. ACS Applied Polymer Materials, 2022, 4, 3023-3033.	2.0	14
11	Impact of Molecular Design on Degradation Lifetimes of Degradable Imine-Based Semiconducting Polymers. Journal of the American Chemical Society, 2022, 144, 3717-3726.	6.6	29
12	Elucidating the Role of Hydrogen Bonds for Improved Mechanical Properties in a High-Performance Semiconducting Polymer. Chemistry of Materials, 2022, 34, 2259-2267.	3.2	30
13	Side Chain Engineering: Achieving Stretch-Induced Molecular Orientation and Enhanced Mobility in Polymer Semiconductors. Chemistry of Materials, 2022, 34, 2696-2707.	3.2	17
14	High-brightness all-polymer stretchable LED with charge-trapping dilution. Nature, 2022, 603, 624-630.	13.7	170
15	Carbohydrate-Containing Conjugated Polymers: Solvent-Resistant Materials for Greener Organic Electronics. ACS Applied Electronic Materials, 2022, 4, 1381-1390.	2.0	6
16	High-mobility semiconducting polymers with different spin ground states. Nature Communications, 2022, 13, 2258.	5.8	21
17	Robust chain aggregation of low-entropy rigid ladder polymers in solution. Journal of Materials Chemistry C, 2022, 10, 13896-13904.	2.7	4
18	Machine learning prediction of glass transition temperature of conjugated polymers from chemical structure. Cell Reports Physical Science, 2022, 3, 100911.	2.8	18

#	Article	IF	Citations
19	Spontaneously supersaturated nucleation strategy for high reproducible and efficient perovskite solar cells. Chemical Engineering Journal, 2021, 405, 126998.	6.6	20
20	Atomic Oxygen-Resistant Epoxy-amines Containing Phenylphosphine Oxide as Low Earth Orbit Stable Polymers. ACS Applied Polymer Materials, 2021, 3, 178-190.	2.0	5
21	The coupling and competition of crystallization and phase separation, correlating thermodynamics and kinetics in OPV morphology and performances. Nature Communications, 2021, 12, 332.	5 . 8	140
22	Observation of Stepwise Ultrafast Crystallization Kinetics of Donor–Acceptor Conjugated Polymers and Correlation with Field Effect Mobility. Chemistry of Materials, 2021, 33, 1637-1647.	3.2	17
23	Efficient nâ€Doping of Polymeric Semiconductors through Controlling the Dynamics of Solutionâ€State Polymer Aggregates. Angewandte Chemie, 2021, 133, 8270-8278.	1.6	12
24	Molecular Origin of Strainâ€Induced Chain Alignment in PDPPâ€Based Semiconducting Polymeric Thin Films. Advanced Functional Materials, 2021, 31, 2100161.	7.8	38
25	Efficient nâ€Doping of Polymeric Semiconductors through Controlling the Dynamics of Solutionâ€State Polymer Aggregates. Angewandte Chemie - International Edition, 2021, 60, 8189-8197.	7.2	43
26	Long-Chain Branched Polypentenamer Rubber: Topological Impact on Tensile Properties, Chain Dynamics, and Strain-Induced Crystallization. ACS Applied Polymer Materials, 2021, 3, 2498-2506.	2.0	3
27	SMART transfer method to directly compare the mechanical response of water-supported and free-standing ultrathin polymeric films. Nature Communications, 2021, 12, 2347.	5 . 8	30
28	Enhancing the Solubility of Semiconducting Polymers in Eco-Friendly Solvents with Carbohydrate-Containing Side Chains. ACS Applied Materials & Samp; Interfaces, 2021, 13, 25175-25185.	4.0	15
29	Phase-Separation-Induced Porous Lithiophilic Polymer Coating for High-Efficiency Lithium Metal Batteries. Nano Letters, 2021, 21, 4757-4764.	4.5	44
30	High-Performance All-Polymer Solar Cells and Photodetectors Enabled by a High-Mobility n-Type Polymer and Optimized Bulk-Heterojunction Morphology. Chemistry of Materials, 2021, 33, 3746-3756.	3.2	17
31	Topology and ground state control in open-shell donor-acceptor conjugated polymers. Cell Reports Physical Science, 2021, 2, 100467.	2.8	14
32	Directly Probing the Fracture Behavior of Ultrathin Polymeric Films. ACS Polymers Au, 2021, 1, 16-29.	1.7	16
33	Taming Charge Transport and Mechanical Properties of Conjugated Polymers with Linear Siloxane Side Chains. Macromolecules, 2021, 54, 5440-5450.	2.2	18
34	Nanoscale Self-Assembly of Poly(3-hexylthiophene) Assisted by a Low-Molecular-Weight Gelator toward Large-Scale Fabrication of Electrically Conductive Networks. ACS Applied Nano Materials, 2021, 4, 8003-8014.	2.4	8
35	Ultra-conformal skin electrodes with synergistically enhanced conductivity for long-time and low-motion artifact epidermal electrophysiology. Nature Communications, 2021, 12, 4880.	5.8	116
36	Evolution of Chain Dynamics and Oxidation States with Increasing Chain Length for a Donor–Acceptor-Conjugated Oligomer Series. Macromolecules, 2021, 54, 8207-8219.	2.2	11

#	Article	IF	CITATIONS
37	(FA 0.83 MA 0.17) 0.95 Cs 0.05 Pb(I 0.83 Br 0.17) 3 Perovskite Films Prepared by Solvent Volatilization for Highâ€Efficiency Solar Cells. Solar Rrl, 2021, 5, 2100640.	3.1	3
38	A molecular design approach towards elastic and multifunctional polymer electronics. Nature Communications, 2021, 12, 5701.	5.8	75
39	Approaching disorder-tolerant semiconducting polymers. Nature Communications, 2021, 12, 5723.	5.8	54
40	Precise Control of Noncovalent Interactions in Semiconducting Polymers for High-Performance Organic Field-Effect Transistors. Chemistry of Materials, 2021, 33, 8267-8277.	3.2	18
41	Engineering donor–acceptor conjugated polymers for high-performance and fast-response organic electrochemical transistors. Journal of Materials Chemistry C, 2021, 9, 4927-4934.	2.7	54
42	Influence of sideâ€chain isomerization on the isothermal crystallization kinetics of poly(3â€alkylthiophenes). Journal of Materials Research, 2021, 36, 191-202.	1.2	8
43	Strain-Induced Nanocavitation in Block Copolymer Thin Films for High Performance Filtration Membranes. ACS Applied Polymer Materials, 2021, 3, 5666-5673.	2.0	3
44	Influence of side-chain isomerization on the isothermal crystallization kinetics of poly(3-alkylthiophenes). Journal of Materials Research, 2021, 36, 1-12.	1.2	2
45	The effect of side-chain branch position on the thermal properties of poly(3-alkylthiophenes). Polymer Chemistry, 2020, 11, 517-526.	1.9	33
46	Impact of Backbone Rigidity on the Thermomechanical Properties of Semiconducting Polymers with Conjugation Break Spacers. Macromolecules, 2020, 53, 6032-6042.	2.2	63
47	Decoupling Poly(3-alkylthiophenes)' Backbone and Side-Chain Conformation by Selective Deuteration and Neutron Scattering. Macromolecules, 2020, 53, 11142-11152.	2.2	26
48	Vertical Composition Distribution and Crystallinity Regulations Enable High-Performance Polymer Solar Cells with >17% Efficiency. ACS Energy Letters, 2020, 5, 3637-3646.	8.8	87
49	Openâ€Shell Donor–Acceptor Conjugated Polymers with High Electrical Conductivity. Advanced Functional Materials, 2020, 30, 1909805.	7.8	43
50	Modulating the thermomechanical properties and self-healing efficiency of siloxane-based soft polymers through metal–ligand coordination. New Journal of Chemistry, 2020, 44, 8977-8985.	1.4	20
51	Tacky Elastomers to Enable Tearâ€Resistant and Autonomous Selfâ€Healing Semiconductor Composites. Advanced Functional Materials, 2020, 30, 2000663.	7.8	85
52	Nonâ€Fullerene Acceptors: Efficient Organic Solar Cell with 16.88% Efficiency Enabled by Refined Acceptor Crystallization and Morphology with Improved Charge Transfer and Transport Properties (Adv. Energy Mater. 18/2020). Advanced Energy Materials, 2020, 10, 2070083.	10.2	3
53	Tuning the Mechanical Properties of a Polymer Semiconductor by Modulating Hydrogen Bonding Interactions. Chemistry of Materials, 2020, 32, 5700-5714.	3.2	87
54	N-Type Complementary Semiconducting Polymer Blends. ACS Applied Polymer Materials, 2020, 2, 2644-2650.	2.0	9

#	Article	IF	Citations
55	Conductive Polymers: Openâ€Shell Donor–Acceptor Conjugated Polymers with High Electrical Conductivity (Adv. Funct. Mater. 24/2020). Advanced Functional Materials, 2020, 30, 2070155.	7.8	O
56	Efficient Organic Solar Cell with 16.88% Efficiency Enabled by Refined Acceptor Crystallization and Morphology with Improved Charge Transfer and Transport Properties. Advanced Energy Materials, 2020, 10, 1904234.	10.2	402
57	Nonfused Nonfullerene Acceptors with an A–D–A′–D–A Framework and a Benzothiadiazole Core for High-Performance Organic Solar Cells. ACS Applied Materials & Samp; Interfaces, 2020, 12, 16531-16540.	4.0	100
58	Achieving High Alignment of Conjugated Polymers by Controlled Dipâ€Coating. Advanced Electronic Materials, 2020, 6, 2000080.	2.6	30
59	Toward the Prediction and Control of Glass Transition Temperature for Donor–Acceptor Polymers. Advanced Functional Materials, 2020, 30, 2002221.	7.8	46
60	Multiamorphous Phases in Diketopyrrolopyrrole-Based Conjugated Polymers: From Bulk to Ultrathin Films. Macromolecules, 2020, 53, 4480-4489.	2.2	18
61	Alkyl Chain Length Effects of Polymer Donors on the Morphology and Device Performance of Polymer Solar Cells with Different Acceptors. Advanced Energy Materials, 2019, 9, 1901740.	10.2	88
62	Mechanical Properties and Failure Behavior of Physically Assembled Triblock Copolymer Gels with Varying Midblock Length. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 1014-1026.	2.4	9
63	Branched Polyethylene as a Plasticizing Additive to Modulate the Mechanical Properties of π-Conjugated Polymers. Macromolecules, 2019, 52, 7870-7877.	2.2	27
64	Stretchable self-healable semiconducting polymer film for active-matrix strain-sensing array. Science Advances, 2019, 5, eaav3097.	4.7	179
65	An Intrinsically Stretchable Highâ€Performance Polymer Semiconductor with Low Crystallinity. Advanced Functional Materials, 2019, 29, 1905340.	7.8	120
66	Wide Potential Window Supercapacitors Using Openâ€Shell Donor–Acceptor Conjugated Polymers with Stable Nâ€Doped States. Advanced Energy Materials, 2019, 9, 1902806.	10.2	53
67	Aggregationâ€Induced Multilength Scaled Morphology Enabling 11.76% Efficiency in Allâ€Polymer Solar Cells Using Printing Fabrication. Advanced Materials, 2019, 31, e1902899.	11.1	270
68	Sticky ends in a self-assembling ABA triblock copolymer: the role of ureas in stimuli-responsive hydrogels. Molecular Systems Design and Engineering, 2019, 4, 91-102.	1.7	7
69	A high-spin ground-state donor-acceptor conjugated polymer. Science Advances, 2019, 5, eaav2336.	4.7	72
70	Roll-to-Roll Scalable Production of Ordered Microdomains through Nonvolatile Additive Solvent Annealing of Block Copolymers. Macromolecules, 2019, 52, 5026-5032.	2.2	11
71	Side-Chain Engineering To Optimize the Charge Transport Properties of Isoindigo-Based Random Terpolymers for High-Performance Organic Field-Effect Transistors. Macromolecules, 2019, 52, 4765-4775.	2.2	23
72	Ptychography of Organic Thin Films at Soft X-ray Energies. Chemistry of Materials, 2019, 31, 4913-4918.	3.2	7

#	Article	IF	Citations
73	Glass Transition Phenomenon for Conjugated Polymers. Macromolecular Chemistry and Physics, 2019, 220, 1900062.	1.1	69
74	Contrasting Chemistry of Block Copolymer Films Controls the Dynamics of Protein Self-Assembly at the Nanoscale. ACS Nano, 2019, 13, 4018-4027.	7.3	16
75	The Critical Role of Electronâ€Donating Thiophene Groups on the Mechanical and Thermal Properties of Donor–Acceptor Semiconducting Polymers. Advanced Electronic Materials, 2019, 5, 1800899.	2.6	89
76	Multi-scale ordering in highly stretchable polymer semiconducting films. Nature Materials, 2019, 18, 594-601.	13.3	251
77	Energy level modulation of donor–acceptor alternating random conjugated copolymers for achieving high-performance polymer solar cells. Journal of Materials Chemistry C, 2019, 7, 15335-15343.	2.7	7
78	Pyrazine-Flanked Diketopyrrolopyrrole (DPP): A New Polymer Building Block for High-Performance n-Type Organic Thermoelectrics. Journal of the American Chemical Society, 2019, 141, 20215-20221.	6.6	170
79	Challenge and Solution of Characterizing Glass Transition Temperature for Conjugated Polymers by Differential Scanning Calorimetry. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 1635-1644.	2.4	27
80	Waferâ€Scale Fabrication of Highâ€Performance nâ€Type Polymer Monolayer Transistors Using a Multiâ€Level Selfâ€Assembly Strategy. Advanced Materials, 2019, 31, e1806747.	11.1	68
81	Tuning the Cross-Linker Crystallinity of a Stretchable Polymer Semiconductor. Chemistry of Materials, 2019, 31, 6465-6475.	3.2	70
82	The meniscus-guided deposition of semiconducting polymers. Nature Communications, 2018, 9, 534.	5.8	324
83	Deformable Organic Nanowire Fieldâ€Effect Transistors. Advanced Materials, 2018, 30, 1704401.	11.1	82
84	Understanding the Impact of Oligomeric Polystyrene Side Chain Arrangement on the Allâ€Polymer Solar Cell Performance. Advanced Energy Materials, 2018, 8, 1701552.	10.2	21
85	Influence of amide-containing side chains on the mechanical properties of diketopyrrolopyrrole-based polymers. Polymer Chemistry, 2018, 9, 5531-5542.	1.9	56
86	The Role of Dielectric Screening in Organic Shortwave Infrared Photodiodes for Spectroscopic Image Sensing. Advanced Functional Materials, 2018, 28, 1805738.	7.8	79
87	Microstructural Evolution of the Thin Films of a Donor–Acceptor Semiconducting Polymer Deposited by Meniscus-Guided Coating. Macromolecules, 2018, 51, 4325-4340.	2.2	21
88	Probing the Viscoelastic Property of Pseudo Freeâ€standing Conjugated Polymeric Thin Films. Macromolecular Rapid Communications, 2018, 39, e1800092.	2.0	79
89	Highly stretchable polymer semiconductor films through the nanoconfinement effect. Science, 2017, 355, 59-64.	6.0	897
90	Electric Field Tuning Molecular Packing and Electrical Properties of Solutionâ€Shearing Coated Organic Semiconducting Thin Films. Advanced Functional Materials, 2017, 27, 1605503.	7.8	47

#	Article	IF	Citations
91	Rollâ€toâ€Roll Printed Largeâ€Area Allâ€Polymer Solar Cells with 5% Efficiency Based on a Low Crystallinity Conjugated Polymer Blend. Advanced Energy Materials, 2017, 7, 1602742.	10.2	214
92	Chemical Vapor-Deposited Hexagonal Boron Nitride as a Scalable Template for High-Performance Organic Field-Effect Transistors. Chemistry of Materials, 2017, 29, 2341-2347.	3.2	52
93	The effects of counter anions on the dynamic mechanical response in polymer networks crosslinked by metal–ligand coordination. Journal of Polymer Science Part A, 2017, 55, 3110-3116.	2.5	29
94	Effects of Molecular Structure and Packing Order on the Stretchability of Semicrystalline Conjugated Poly(Tetrathienoaceneâ€diketopyrrolopyrrole) Polymers. Advanced Electronic Materials, 2017, 3, 1600311.	2.6	89
95	Taming Charge Transport in Semiconducting Polymers with Branched Alkyl Side Chains. Advanced Functional Materials, 2017, 27, 1701973.	7.8	80
96	Tuning domain size and crystallinity in isoindigo/PCBM organic solar cells via solution shearing. Organic Electronics, 2017, 40, 79-87.	1.4	16
97	An <i>in situ</i> GISAXS study of selective solvent vapor annealing in thin block copolymer films: Symmetry breaking of inâ€plane sphere order upon deswelling. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 331-338.	2.4	40
98	Role of Polymer Structure on the Conductivity of Nâ€Doped Polymers. Advanced Electronic Materials, 2016, 2, 1600004.	2.6	99
99	Impact of Polystyrene Oligomer Side Chains on Naphthalene Diimide–Bithiophene Polymers as nâ€Type Semiconductors for Organic Fieldâ€Effect Transistors. Advanced Functional Materials, 2016, 26, 1261-1270.	7.8	30
100	Stretchable Self-Healing Polymeric Dielectrics Cross-Linked Through Metal–Ligand Coordination. Journal of the American Chemical Society, 2016, 138, 6020-6027.	6.6	453
101	Controlling Domain Spacing and Grain Size in Cylindrical Block Copolymer Thin Films by Means of Thermal and Solvent Vapor Annealing. Macromolecules, 2016, 49, 3373-3381.	2.2	66
102	Comparison of the Morphology Development of Polymer–Fullerene and Polymer–Polymer Solar Cells during Solutionâ€Shearing Blade Coating. Advanced Energy Materials, 2016, 6, 1601225.	10.2	79
103	Improving the NO _x decomposition and storage activity through co-incorporating ammonium and copper ions into Mg/Al hydrotalcites. RSC Advances, 2016, 6, 45127-45134.	1.7	4
104	Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature, 2016, 539, 411-415.	13.7	1,030
105	All-Polymer Solar Cells Employing Non-Halogenated Solvent and Additive. Chemistry of Materials, 2016, 28, 5037-5042.	3.2	69
106	Nonâ€Conjugated Flexible Linkers in Semiconducting Polymers: A Pathway to Improved Processability without Compromising Device Performance. Advanced Electronic Materials, 2016, 2, 1600104.	2.6	65
107	Compact Roll-to-Roll Coater for in Situ X-ray Diffraction Characterization of Organic Electronics Printing. ACS Applied Materials & Samp; Interfaces, 2016, 8, 1687-1694.	4.0	35
108	Significance of the double-layer capacitor effect in polar rubbery dielectrics and exceptionally stable low-voltage high transconductance organic transistors. Scientific Reports, 2015, 5, 17849.	1.6	66

#	Article	IF	CITATIONS
109	Large-area formation of self-aligned crystalline domains of organic semiconductors on transistor channels using CONNECT. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5561-5566.	3.3	62
110	Flow-enhanced solution printing of all-polymer solar cells. Nature Communications, 2015, 6, 7955.	5.8	221
111	An In Situ Grazing Incidence Xâ€Ray Scattering Study of Block Copolymer Thin Films During Solvent Vapor Annealing. Advanced Materials, 2014, 26, 273-281.	11.1	141
112	Solvent vapor annealing of block copolymer thin films: removal of processing history. Colloid and Polymer Science, 2014, 292, 1795-1802.	1.0	19
113	Pattern transfer using block copolymers. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371, 20120306.	1.6	66
114	Patterning: High Aspect Ratio Subâ€15 nm Silicon Trenches From Block Copolymer Templates (Adv. Mater.) Tj E	тодо о	rgBT /Overloch
115	High Density and Large Area Arrays of Silicon Oxide Pillars with Tunable Domain Size for Mask Etch Applications. Advanced Materials, 2012, 24, 5505-5511.	11.1	14
116	High Aspect Ratio Subâ€15 nm Silicon Trenches From Block Copolymer Templates. Advanced Materials, 2012, 24, 5688-5694.	11.1	77