
Mario Mitov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2932777/publications.pdf Version: 2024-02-01

Μλρίο Μιτον

#	Article	IF	CITATIONS
1	Gram-positive bacteria covered bioanode in a membrane-electrode assembly for use in bioelectrochemical systems. Bioelectrochemistry, 2022, 144, 108011.	2.4	9
2	Silver recovery by microbial electrochemical snorkel and microbial fuel cell. Electrochimica Acta, 2022, 408, 139941.	2.6	6
3	First evidence for applicability of the microbial electrochemical snorkel for metal recovery. Electrochemistry Communications, 2021, 122, 106889.	2.3	7
4	Electroactivity of the Gram-positive bacterium Paenibacillus dendritiformis MA-72. Bioelectrochemistry, 2020, 136, 107632.	2.4	22
5	Graphite–Metal Oxide Composites as Potential Anodic Catalysts for Microbial Fuel Cells. Catalysts, 2020, 10, 796.	1.6	10
6	Development of coupled redox active network in Ca-alginate polymer for immobilization of Pseudomonas putida 1046 on electrode surface. Electrochimica Acta, 2019, 312, 432-440.	2.6	10
7	Modified graphite electrodes as potential cathodic electrocatalysts for microbial electrolysis cells. Bulgarian Chemical Communications, 2019, 51, 284-288.	0.2	0
8	Light-dependent processes on the cathode enhance the electrical outputs of sediment microbial fuel cells. Bioelectrochemistry, 2018, 122, 1-10.	2.4	14
9	Electrodeposited styrylquinolinium dye as molecular electrocatalyst for coupled redox reactions. Bioelectrochemistry, 2018, 123, 173-181.	2.4	4
10	Nickel-based electrodeposits as potential cathode catalysts for hydrogen production by microbial electrolysis. Journal of Power Sources, 2017, 356, 467-472.	4.0	52
11	The glyoxylate pathway contributes to enhanced extracellular electron transfer in yeast-based biofuel cell. Bioelectrochemistry, 2017, 116, 10-16.	2.4	8
12	Mechanisms of electron transfer between a styrylquinolinium dye and yeast in biofuel cell. Bioelectrochemistry, 2016, 112, 158-165.	2.4	11
13	Effect of the support material type on the electrocatalytic activity of Pd–Au electrodeposits in neutral electrolyte. International Journal of Hydrogen Energy, 2015, 40, 7329-7334.	3.8	6
14	Extracellular electron transfer in yeast-based biofuel cells: A review. Bioelectrochemistry, 2015, 106, 177-185.	2.4	85
15	Chemometrical assessment of the electrical parameters obtained by long-term operating freshwater sediment microbial fuel cells. Bioelectrochemistry, 2015, 106, 105-114.	2.4	34
16	Mitochondrial origin of extracelullar transferred electrons in yeast-based biofuel cells. Bioelectrochemistry, 2015, 106, 232-239.	2.4	25
17	Enhanced metabolic and redox activity of vascular aquatic plant Lemna valdiviana under polarization in Direct Photosynthetic Plant Fuel Cell. Bioelectrochemistry, 2015, 106, 226-231.	2.4	19
18	Stable current outputs and phytate degradation by yeast-based biofuel cell. Yeast, 2014, 31, 343-348.	0.8	21

Mario Μιτον

#	Article	IF	CITATIONS
19	Pd-Au Electrocatalysts for Hydrogen Evolution Reaction at Neutral pH. International Journal of Electrochemistry, 2014, 2014, 1-6.	2.4	18
20	Enhanced phytate dephosphorylation by using Candida melibiosica yeast-based biofuel cell. Biotechnology Letters, 2014, 36, 1993-1997.	1.1	12
21	Novel nanostructured electrocatalysts for hydrogen evolution reaction in neutral and weak acidic solutions. International Journal of Hydrogen Energy, 2012, 37, 16522-16526.	3.8	67
22	Conversion of solar energy into electricity by using duckweed in Direct Photosynthetic Plant Fuel Cell. Bioelectrochemistry, 2012, 87, 185-191.	2.4	48
23	Improvement of Yeastâ ^{~,} Biofuel Cell Output by Electrode Modifications. Industrial & Engineering Chemistry Research, 2011, 50, 557-564.	1.8	65
24	Influence of artificial mediators on yeast-based fuel cell performance. Journal of Bioscience and Bioengineering, 2011, 112, 379-387.	1.1	107
25	Nanomodified NiFe- and NiFeP-carbon felt as anode electrocatalysts in yeast-biofuel cell. Journal of Materials Science, 2011, 46, 7074-7081.	1.7	34
26	Uncertainties of Yeastâ€Based Biofuel Cell Operational Characteristics. Fuel Cells, 2011, 11, 824-837.	1.5	19
27	Bacterial mutalism in the mosses roots applicable in Bryophyta-microbial fuel cell. Communications in Agricultural and Applied Biological Sciences, 2011, 76, 63-5.	0.0	3
28	Potential application of Candida melibiosica in biofuel cells. Bioelectrochemistry, 2010, 78, 57-61.	2.4	83
29	Complex performance of novel CoNiMnB electrodeposits in alkaline borohydride solutions. Environmental Chemistry Letters, 2009, 7, 167-173.	8.3	10
30	Catalytic activity of NiW electrodeposits. Environmental Chemistry Letters, 2009, 7, 249-253.	8.3	1
31	Corrosion of aluminium and aluminium alloy in ethylene glycol–water mixtures. Journal of Alloys and Compounds, 2009, 470, 397-403.	2.8	21
32	Effects of nickel foam dimensions on catalytic activity of supported Co–Mn–B nanocomposites for hydrogen generation from stabilized borohydride solutions. Journal of Materials Science, 2007, 42, 3367-3372.	1.7	76
33	Electrochemical Properties of Nanoparticles Produced by Borohydride Reduction. , 2002, , 623-628.		0
34	Synthesis, Structural and Thermodynamical Characterization of Mm(NiCo)5-xAlx Alloys. , 2002, , 601-606.		0
35	Possibilities for battery application of CoxByHz colloid particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 149, 413-419.	2.3	23
36	Nanoparticles produced by borohydride reduction as precursors for metal hydride electrodes. Journal of Applied Electrochemistry, 1999, 29, 59-63.	1.5	40

#	Article	IF	CITATIONS
37	Corrosion behaviour of amorphous nickel-base alloys in sulfuric acid. Journal of Materials Science Letters, 1997, 16, 1712-1715.	0.5	5
38	Catalytic activity of nickel based amorphous alloys for oxidation of hydrogen and carbon monoxide. Applied Catalysis A: General, 1996, 135, L19-L24.	2.2	12