
Hai-Tian Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2932722/publications.pdf Version: 2024-02-01

HAL-TIAN ZHANC

#	Article	IF	CITATIONS
1	Anisotropic bulk rare-earth-free Mn-Al-(C) magnets prepared under high-stress and large-strain conditions. Journal of Magnetism and Magnetic Materials, 2022, 545, 168742.	1.0	0
2	Strong magnets with ordered structures. Materials Research Letters, 2022, 10, 1-5.	4.1	17
3	Fabrication and magnetic properties of anisotropic SmCo3/Fe(Co) bulk nanocomposite magnets. Journal of Applied Physics, 2022, 131, 043904.	1.1	0
4	Reconfigurable perovskite nickelate electronics for artificial intelligence. Science, 2022, 375, 533-539.	6.0	93
5	Oxygen vacancy dynamics in monoclinic metallic VO2 domain structures. Applied Physics Letters, 2022, 120, .	1.5	6
6	Quantum nickelate platform for future multidisciplinary research. Journal of Applied Physics, 2022, 131, .	1.1	5
7	Proton distribution visualization in perovskite nickelate devices utilizing nanofocused x rays. Physical Review Materials, 2021, 5, .	0.9	6
8	Rewritable Nanoplasmonics through Room-Temperature Phase Manipulations of Vanadium Dioxide. Nano Letters, 2020, 20, 7760-7766.	4.5	10
9	Perovskite neural trees. Nature Communications, 2020, 11, 2245.	5.8	38
10	Organismic materials for beyond von Neumann machines. Applied Physics Reviews, 2020, 7, .	5.5	30
11	Onâ€Demand Nanoscale Manipulations of Correlated Oxide Phases. Advanced Functional Materials, 2019, 29, 1905585.	7.8	14
12	Perovskite nickelates as bio-electronic interfaces. Nature Communications, 2019, 10, 1651.	5.8	33
13	Beyond electrostatic modification: design and discovery of functional oxide phases via ionic-electronic doping. Advances in Physics: X, 2019, 4, 1523686.	1.5	31
14	Frontiers in the Growth of Complex Oxide Thin Films: Past, Present, and Future of Hybrid MBE. Advanced Functional Materials, 2018, 28, 1702772.	7.8	78
15	Engineering Bulk, Layered, Multicomponent Nanostructures with High Energy Density. Small, 2018, 14, e1800619.	5.2	91
16	Novel Bimorphological Anisotropic Bulk Nanocomposite Materials with High Energy Products. Advanced Materials, 2017, 29, 1606430.	11.1	189
17	Opportunities in vanadium-based strongly correlated electron systems. MRS Communications, 2017, 7, 27-52.	0.8	77
18	Controllably Manipulating Three-Dimensional Hybrid Nanostructures for Bulk Nanocomposites with Large Energy Products. Nano Letters, 2017, 17, 2985-2993.	4.5	176

HAI-TIAN ZHANG

#	Article	IF	CITATIONS
19	High-Quality LaVO ₃ Films as Solar Energy Conversion Material. ACS Applied Materials & Interfaces, 2017, 9, 12556-12562.	4.0	26
20	Mapping growth windows in quaternary perovskite oxide systems by hybrid molecular beam epitaxy. Applied Physics Letters, 2016, 109, .	1.5	22
21	Imprinting of Local Metallic States into VO ₂ with Ultraviolet Light. Advanced Functional Materials, 2016, 26, 6612-6618.	7.8	43
22	Photoluminescence of monolayer transition metal dichalcogenides integrated with VO ₂ . Journal of Physics Condensed Matter, 2016, 28, 504001.	0.7	10
23	Correlated metals as transparent conductors. Nature Materials, 2016, 15, 204-210.	13.3	291
24	Accessing a growth window for SrVO3 thin films. Applied Physics Letters, 2015, 107, .	1.5	48
25	Phase stabilization of VO2 thin films in high vacuum. Journal of Applied Physics, 2015, 118, .	1.1	14
26	Self-regulated growth of LaVO3 thin films by hybrid molecular beam epitaxy. Applied Physics Letters, 2015, 106, .	1.5	42
27	Wafer-scale growth of VO2 thin films using a combinatorial approach. Nature Communications, 2015, 6, 8475.	5.8	117
28	Grain-size-dependent martensitic transformation in bulk nanocrystalline TiNi under tensile deformation Journal of Alloys and Compounds, 2012, 544, 19-23	2.8	35

deformation. Journal of Alloys and Compounds, 2012, 544, 19-23.