
Charles B Kimmel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2932535/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transgeneâ€mediated skeletal phenotypic variation in zebrafish. Journal of Fish Biology, 2021, 98, 956-970.	0.7	5
2	Developmental tuning of mineralization drives morphological diversity of gill cover bones in sculpins and their relatives. Evolution Letters, 2019, 3, 374-391.	1.6	2
3	A rich diversity of opercle bone shape among teleost fishes. PLoS ONE, 2017, 12, e0188888.	1.1	6
4	Ligament versus bone cell identity in the zebrafish hyoid skeleton is regulated by <i>mef2ca</i> . Development (Cambridge), 2016, 143, 4430-4440.	1.2	31
5	Pharyngeal morphogenesis requires fras1 - itga8 -dependent epithelial-mesenchymal interaction. Developmental Biology, 2016, 416, 136-148.	0.9	33
6	Epigenetic regulation of hematopoiesis by DNA methylation. ELife, 2016, 5, e11813.	2.8	36
7	Patterns of variation and covariation in the shapes of mandibular bones of juvenile salmonids in the genus <i>Oncorhynchus</i> . Evolution & Development, 2015, 17, 302-314.	1.1	7
8	Building the backbone: the development and evolution of vertebral patterning. Development (Cambridge), 2015, 142, 1733-1744.	1.2	115
9	Skull developmental modularity: a view from a single bone - or two. Journal of Applied Ichthyology, 2014, 30, 600-607.	0.3	10
10	Role of mef2ca in developmental buffering of the zebrafish larval hyoid dermal skeleton. Developmental Biology, 2014, 385, 189-199.	0.9	29
11	Association between integration structure and functional evolution in the opercular four-bar apparatus of the threespine stickleback,Gasterosteus aculeatus(Pisces: Gasterosteidae). Biological Journal of the Linnean Society, 2014, 111, 375-390.	0.7	18
12	<i>barx1</i> represses joints and promotes cartilage in the craniofacial skeleton. Development (Cambridge), 2013, 140, 2765-2775.	1.2	67
13	edn1 and hand2 Interact in Early Regulation of Pharyngeal Arch Outgrowth during Zebrafish Development. PLoS ONE, 2013, 8, e67522.	1.1	22
14	Hedgehog-dependent proliferation drives modular growth during morphogenesis of a dermal bone. Development (Cambridge), 2012, 139, 2371-2380.	1.2	52
15	fras1 shapes endodermal pouch 1 and stabilizes zebrafish pharyngeal skeletal development. Development (Cambridge), 2012, 139, 2804-2813.	1.2	25
16	Developmental dissociation in morphological evolution of the stickleback opercle. Evolution & Development, 2012, 14, 326-337.	1.1	30
17	INDEPENDENT AXES OF GENETIC VARIATION AND PARALLEL EVOLUTIONARY DIVERGENCE OF OPERCLE BONE SHAPE IN THREESPINE STICKLEBACK. Evolution; International Journal of Organic Evolution, 2012, 66, 419-434.	1.1	35
18	Zebrafish sp7:EGFP: A transgenic for studying otic vesicle formation, skeletogenesis, and bone regeneration. Genesis, 2010, 48, spcone-spcone.	0.8	0

CHARLES B KIMMEL

#	Article	IF	CITATIONS
19	Modes of Developmental Outgrowth and Shaping of a Craniofacial Bone in Zebrafish. PLoS ONE, 2010, 5, e9475.	1.1	107
20	Genetic Analysis of Fin Development in Zebrafish Identifies Furin and Hemicentin1 as Potential Novel Fraser Syndrome Disease Genes. PLoS Genetics, 2010, 6, e1000907.	1.5	103
21	<i>hand2</i> and Dlx genes specify dorsal, intermediate and ventral domains within zebrafish pharyngeal arches. Development (Cambridge), 2010, 137, 2507-2517.	1.2	125
22	Linked morphological changes during palate evolution in early tetrapods. Journal of Anatomy, 2009, 215, 91-109.	0.9	37
23	The midline, oral ectoderm, and the arch-0 problem. Integrative and Comparative Biology, 2008, 48, 668-680.	0.9	15
24	Imaging the cellular behaviors and interactions governing zebrafish palatogenesis. FASEB Journal, 2008, 22, 11.3.	0.2	0
25	Morphing the hyomandibular skeleton in development and evolution. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2007, 308B, 609-624.	0.6	49
26	Zebrafish furin mutants reveal intricacies in regulating Endothelin1 signaling in craniofacial patterning. Developmental Biology, 2006, 295, 194-205.	0.9	105
27	crabp and maf highlight the novelty of the amphioxus club-shaped gland. Acta Zoologica, 2004, 85, 91-99.	0.6	10
28	An overview of Trink's scientific accomplishments. Developmental Dynamics, 2003, 228, 586-587.	0.8	0
29	Endothelin 1-mediated regulation of pharyngeal bone development in zebrafish. Development (Cambridge), 2003, 130, 1339-1351.	1.2	117
30	The zebrafish T-box genes <i>no tail</i> and <i>spadetail</i> are required for development of trunk and tail mesoderm and medial floor plate. Development (Cambridge), 2002, 129, 3311-3323.	1.2	117
31	Two linked <i>hairy/Enhancer of split</i> -related zebrafish genes, <i>her1</i> and <i>her7</i> , function together to refine alternating somite boundaries. Development (Cambridge), 2002, 129, 3693-3704.	1.2	146
32	Specification and Morphogenesis of the Zebrafish Larval Head Skeleton. Developmental Biology, 2001, 233, 239-257.	0.9	162
33	Inhibition of zebrafishfgf8 pre-mRNA splicing with morpholino oligos: A quantifiable method for gene knockdown. Genesis, 2001, 30, 154-156.	0.8	352
34	Neural crest patterning and the evolution of the jaw. Journal of Anatomy, 2001, 199, 105-120.	0.9	93
35	Morpholino phenocopies ofendothelin 1 (sucker) and other anterior arch class mutations. Genesis, 2001, 30, 186-187.	0.8	40
36	Neural crest patterning and the evolution of the jaw. Journal of Anatomy, 2001, 199, 105-119.	0.9	5

CHARLES B KIMMEL

#	Article	IF	CITATIONS
37	An amphioxus snail gene: Expression in paraxial mesoderm and neural plate suggests a conserved role in patterning the chordate embryo. Development Genes and Evolution, 1998, 208, 569-577.	0.4	134
38	The Shaping of Pharyngeal Cartilages during Early Development of the Zebrafish. Developmental Biology, 1998, 203, 245-263.	0.9	215
39	Genetic Analysis of Chromosomal Rearrangements in the cyclops Region of the Zebrafish Genome. Genetics, 1998, 148, 373-380.	1.2	35
40	Spatial regulation offloating head expression in the developing notochord. Developmental Dynamics, 1997, 209, 156-165.	0.8	52
41	Was Urbilateria segmented?. Trends in Genetics, 1996, 12, 329-331.	2.9	107
42	Stages of embryonic development of the zebrafish. Developmental Dynamics, 1995, 203, 253-310.	0.8	10,076
43	A homeobox gene essential for zebrafish notochord development. Nature, 1995, 378, 150-157.	13.7	441
44	Mitotic domains in the early embryo of the zebrafish. Nature, 1992, 360, 735-737.	13.7	121
45	The cyclops mutation blocks specification of the floor plate of the zebrafish central nervous system. Nature, 1991, 350, 339-341.	13.7	421
46	A mutation that changes cell movement and cell fate in the zebrafish embryo. Nature, 1989, 337, 358-362.	13.7	245
47	Cell lineages generating axial muscle in the zebrafish embryo. Nature, 1987, 327, 234-237.	13.7	63
48	Segmental homologies among reticulospinal neurons in the hindbrain of the zebrafish larva. Journal of Comparative Neurology, 1986, 251, 147-159.	0.9	278
49	T reticular interneurons: A class of serially repeating cells in the zebrafish hindbrain. Journal of Comparative Neurology, 1985, 233, 365-376.	0.9	97
50	Anatomy of the posterior lateral line system in young larvae of the zebrafish. Journal of Comparative Neurology, 1985, 233, 377-389.	0.9	278
51	Synaptogenesis and its relation to growth of the postsynaptic cell: A quantitative study of the developing mauthner neuron of the axolotl. Journal of Comparative Neurology, 1982, 204, 364-376.	0.9	24
52	Brain neurons which project to the spinal cord in young larvae of the zebrafish. Journal of Comparative Neurology, 1982, 205, 112-127.	0.9	247
53	Morphogenesis and synaptogenesis of the zebrafish mauthner neuron. Journal of Comparative Neurology, 1981, 198, 101-120.	0.9	128
54	Directional sensitivity of the Mauthner cell system to vibrational stimulation in zebrafish larvae. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1980, 140, 337-342.	0.7	35

#	Article	IF	CITATIONS
55	Decreased fast-start performance of zebrafish larvae lacking mauthner neurons. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1980, 140, 343-350.	0.7	92
56	The development and behavioral characteristics of the startle response in the zebra fish. Developmental Psychobiology, 1974, 7, 47-60.	0.9	298
57	Patterning in synaptic knobs which connect with Mauthner's cell (Ambystoma mexicanum). Journal of Comparative Neurology, 1974, 156, 49-79.	0.9	25