Amit Chandra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2931527/publications.pdf Version: 2024-02-01

ΔΜΙΤ CHANDRA

#	Article	IF	CITATIONS
1	Automated, scalable culture of human embryonic stem cells in feederâ€free conditions. Biotechnology and Bioengineering, 2009, 102, 1636-1644.	1.7	147
2	Quality control guidelines for clinical-grade human induced pluripotent stem cell lines. Regenerative Medicine, 2018, 13, 859-866.	0.8	147
3	Manufacture of a human mesenchymal stem cell population using an automated cell culture platform. Cytotechnology, 2007, 55, 31-39.	0.7	55
4	Manufacturing models permitting roll out/scale out of clinically led autologous cell therapies: regulatory and scientific challenges for comparability. Cytotherapy, 2014, 16, 1033-1047.	0.3	54
5	Human cell culture process capability: a comparison of manual and automated production. Journal of Tissue Engineering and Regenerative Medicine, 2009, 4, n/a-n/a.	1.3	47
6	Precision manufacturing for clinical-quality regenerative medicines. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2012, 370, 3924-3949.	1.6	42
7	Comparability of automated human induced pluripotent stem cell culture: a pilot study. Bioprocess and Biosystems Engineering, 2016, 39, 1847-1858.	1.7	34
8	Investigating the feasibility of scale up and automation of human induced pluripotent stem cells cultured in aggregates in feeder free conditions. Journal of Biotechnology, 2014, 173, 53-58.	1.9	33
9	Enabling Consistency in Pluripotent Stem Cell-Derived Products for Research and Development and Clinical Applications Through Material Standards. Stem Cells Translational Medicine, 2015, 4, 217-223.	1.6	30
10	Stem cell culture conditions and stability: a joint workshop of the PluriMes Consortium and Pluripotent Stem Cell Platform. Regenerative Medicine, 2019, 14, 243-255.	0.8	18
11	Qualification of academic facilities for small-scale automated manufacture of autologous cell-based products. Regenerative Medicine, 2014, 9, 799-815.	0.8	12
12	Science-based assessment of source materials for cell-based medicines: report of a stakeholders workshop. Regenerative Medicine, 2018, 13, 935-944.	0.8	12
13	The Implementation of Novel Collaborative Structures for the Identification and Resolution of Barriers to Pluripotent Stem Cell Translation. Stem Cells and Development, 2013, 22, 63-72.	1.1	7
14	Distributed automated manufacturing of pluripotent stem cell products. International Journal of Advanced Manufacturing Technology, 2020, 106, 1085-1103.	1.5	7
15	Comparability of scalable, automated hMSC culture using manual and automated process steps. Biochemical Engineering Journal, 2016, 108, 69-83.	1.8	5
16	The management of risk and investment in cell therapy process development: a case study for neurodegenerative disease. Regenerative Medicine, 2019, 14, 465-488.	0.8	4
17	Feeling the pain: Disruptive Innovation in Healthcare Markets. , 2008, , 25-34.		1