Yangyang Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2931515/publications.pdf

Version: 2024-02-01

687363 752698 20 729 13 20 citations h-index g-index papers 20 20 20 458 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Radical photoinitiation with LEDs and applications in the 3D printing of composites. Chemical Society Reviews, 2021, 50, 3824-3841.	38.1	110
2	Enantioselective synthesis of helical polydiacetylene by application of linearly polarized light and magnetic field. Nature Communications, 2014, 5, 5050.	12.8	93
3	A monocomponent bifunctional benzophenone–carbazole type II photoinitiator for LED photoinitiating systems. Polymer Chemistry, 2020, 11, 3551-3556.	3.9	72
4	<i>In silico</i> rational design by molecular modeling of new ketones as photoinitiators in three-component photoinitiating systems: application in 3D printing. Polymer Chemistry, 2020, 11, 2230-2242.	3.9	71
5	Helical polydiacetylene prepared in the liquid crystal phase using circular polarized ultraviolet light. Chemical Communications, 2014, 50, 365-367.	4.1	56
6	Monocomponent Photoinitiators based on Benzophenone-Carbazole Structure for LED Photoinitiating Systems and Application on 3D Printing. Polymers, 2020, 12, 1394.	4.5	50
7	Thermochromism and supramolecular chirality of the coumarin-substituted polydiacetylene LB films. Journal of Colloid and Interface Science, 2013, 400, 116-122.	9.4	46
8	Allyloxy ketones as efficient photoinitiators with high migration stability in free radical polymerization and 3D printing. Dyes and Pigments, 2021, 185, 108900.	3.7	39
9	Novel ketone derivative-based photoinitiating systems for free radical polymerization under mild conditions and 3D printing. Polymer Chemistry, 2020, 11, 5767-5777.	3.9	38
10	Design of ketone derivatives as highly efficient photoinitiators for free radical and cationic photopolymerizations and application in <scp>3D</scp> printing of composites. Journal of Polymer Science, 2020, 58, 3432-3445.	3.8	34
11	Ketone derivatives as photoinitiators for both radical and cationic photopolymerizations under visible LED and application in 3D printing. European Polymer Journal, 2020, 132, 109737.	5.4	33
12	Effect of Zeolite Fillers on the Photopolymerization Kinetics for Photocomposites and Lithography. ACS Applied Polymer Materials, 2019, 1, 2854-2861.	4.4	27
13	Multi-stimuli-responsiveness of a novel polydiacetylene-based supramolecular gel. Soft Matter, 2018, 14, 8044-8050.	2.7	22
14	Chirality Transfer and Modulation in LB Films Derived From the Diacetylene/Melamine Hydrogenâ∈Bonded Complex. Chirality, 2015, 27, 492-499.	2.6	9
15	Charge Transfer Complexes (CTCs) with Pyridinium Salts: Towards Efficient Dual Photochemical/Thermal Initiators and 3D Printing Applications. Macromolecular Rapid Communications, 2022, , 2200314.	3.9	8
16	Polydiacetylene (<scp>PDA</scp>) based supramolecular gel upon coassembly with a bolaamphiphilic cogelator. Polymers for Advanced Technologies, 2020, 31, 2640-2646.	3.2	7
17	Preparation of Iron Fillerâ€Based Photocomposites and Application in 3D Printing. Macromolecular Materials and Engineering, 2021, 306, 2000720.	3.6	5
18	Fabrication of a novel polydiacetylene-based gel system through self-assembly and the stimuli-induced colorimetric responsiveness. European Polymer Journal, 2022, 171, 111202.	5.4	4

#	Article	IF	CITATIONS
19	Nearâ€InfraredÂLight/Thermal Dualâ€Responsive Epoxyâ€Based Polydiacetylene Composite for 3D Printing. Advanced Materials Interfaces, 2021, 8, 2101481.	3.7	3
20	A writable anilineâ€functionalized polydiacetylene composite with obvious colorimetric change upon both heating and near infrared lights irradiation. Polymers for Advanced Technologies, 2022, 33, 1021-1026.	3.2	2