Bo W Laursen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2931511/publications.pdf

Version: 2024-02-01

136 5,064 37 66 papers citations h-index g-index

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Microporous Polycarbazole with High Specific Surface Area for Gas Storage and Separation. Journal of the American Chemical Society, 2012, 134, 6084-6087.	13.7	660
2	Ground-State Equilibrium Thermodynamics and Switching Kinetics of Bistable [2]Rotaxanes Switched in Solution, Polymer Gels, and Molecular Electronic Devices. Chemistry - A European Journal, 2006, 12, 261-279.	3.3	216
3	Structures and Properties of Self-Assembled Monolayers of Bistable [2]Rotaxanes on Au (111) Surfaces from Molecular Dynamics Simulations Validated with Experiment. Journal of the American Chemical Society, 2005, 127, 1563-1575.	13.7	202
4	Synthesis, Structure, and Properties of Azatriangulenium Salts. Chemistry - A European Journal, 2001, 7, 1773-1783.	3.3	197
5	Synthesis of a Triazatriangulenium Salt. Angewandte Chemie - International Edition, 2000, 39, 3432-3434.	13.8	180
6	Functionally Rigid Bistable [2]Rotaxanes. Journal of the American Chemical Society, 2007, 129, 960-970.	13.7	125
7	A Highly Configurationally Stable [4]Heterohelicenium Cation. Angewandte Chemie - International Edition, 2003, 42, 3162-3166.	13.8	124
8	Plug-and-Play Optical Materials from Fluorescent Dyes and Macrocycles. CheM, 2020, 6, 1978-1997.	11.7	124
9	2,6,10-Tris(dialkylamino)trioxatriangulenium Ions. Synthesis, Structure, and Properties of Exceptionally Stable Carbenium Ions. Journal of the American Chemical Society, 1998, 120, 12255-12263.	13.7	108
10	Molecular Dynamics Simulation of Amphiphilic Bistable [2]Rotaxane Langmuir Monolayers at the Air/Water Interface. Journal of the American Chemical Society, 2005, 127, 14804-14816.	13.7	102
11	Liquid Crystalline Metal-Free Phthalocyanines Designed for Charge and Exciton Transport. Journal of Physical Chemistry B, 2005, 109, 20315-20323.	2.6	101
12	Counterion-Induced Translational Isomerism in a Bistable [2]Rotaxane. Organic Letters, 2004, 6, 4167-4170.	4.6	91
13	Solutionâ€Processed Ultrathin Chemically Derived Graphene Films as Soft Top Contacts for Solidâ€State Molecular Electronic Junctions. Advanced Materials, 2012, 24, 1333-1339.	21.0	82
14	Elimination of autofluorescence background from fluorescence tissue images by use of time-gated detection and the AzaDiOxaTriAngulenium (ADOTA) fluorophore. Analytical and Bioanalytical Chemistry, 2013, 405, 2065-2075.	3.7	79
15	Resolution of [4]Heterohelicenium Dyes with Unprecedented Pummerer-like Chemistry. Angewandte Chemie - International Edition, 2005, 44, 1879-1883.	13.8	78
16	Ultrathin Reduced Graphene Oxide Films as Transparent Topâ€Contacts for Light Switchable Solidâ€State Molecular Junctions. Advanced Materials, 2013, 25, 4164-4170.	21.0	75
17	Structural Evidence of Mechanical Shuttling in Condensed Monolayers of Bistable Rotaxane Molecules. Angewandte Chemie - International Edition, 2005, 44, 7035-7039.	13.8	70
18	Aligned Thin Films of Discotic Hexabenzocoronenes: Anisotropy in the Optical and Charge Transport Properties. Advanced Functional Materials, 2004, 14, 1053-1061.	14.9	68

#	Article	IF	CITATIONS
19	Highly Conductive Semitransparent Graphene Circuits Screenâ€Printed from Waterâ€Based Graphene Oxide Ink. Advanced Materials Technologies, 2017, 2, 1700011.	5.8	59
20	Quantifying the working stroke of tetrathiafulvalene-based electrochemically-driven linear motor-molecules. Chemical Communications, 2006, , 144-146.	4.1	58
21	Synthesis of Super Stable Triangulenium Dye. Journal of Organic Chemistry, 2009, 74, 3183-3185.	3.2	56
22	A Comprehensive Study of Extended Tetrathiafulvalene Cruciform Molecules for Molecular Electronics: Synthesis and Electrical Transport Measurements. Journal of the American Chemical Society, 2014, 136, 16497-16507.	13.7	55
23	Fluorometric Recognition of Nucleotides within a Waterâ€Soluble Tetrahedral Capsule. Angewandte Chemie - International Edition, 2019, 58, 4200-4204.	13.8	55
24	Straightforward synthesis of a triazine-based porous carbon with high gas-uptake capacities. Journal of Materials Chemistry A, 2014, 2, 14201.	10.3	54
25	Polarization and Symmetry of Electronic Transitions in Long Fluorescence Lifetime Triangulenium Dyes. Journal of Physical Chemistry A, 2013, 117, 2160-2168.	2.5	50
26	Synthesis and Optical Properties of Trioxatriangulenium Dyes with One and Two Peripheral Amino Substituents. Journal of Organic Chemistry, 2010, 75, 6182-6190.	3.2	49
27	Long-Lived Bright Red Emitting Azaoxa-Triangulenium Fluorophores. PLoS ONE, 2013, 8, e63043.	2.5	48
28	Enhanced fluorescence emission of Me-ADOTA+ by self-assembled silver nanoparticles on a gold film. Chemical Physics Letters, 2009, 476, 46-50.	2.6	47
29	Macroscopic Alignment of Graphene Stacks by Langmuirâ^'Blodgett Deposition of Amphiphilic Hexabenzocoronenes. Langmuir, 2004, 20, 4139-4146.	3.5	46
30	Design, synthesis, and time-gated cell imaging of carbon-bridged triangulenium dyes with long fluorescence lifetime and red emission. Chemical Science, 2018, 9, 3122-3130.	7.4	46
31	A Highly Configurationally Stable [4]Heterohelicenium Cation. Angewandte Chemie, 2003, 115, 3270-3274.	2.0	45
32	2,6,10-Tris(dialkylamino)trioxatriangulenium salts: a new promising fluorophore. Ion-pair formation and aggregation in non-polar solvents. Photochemical and Photobiological Sciences, 2005, 4, 568.	2.9	45
33	Locking down the Electronic Structure of (Monopyrrolo)tetrathiafulvalene in [2]Rotaxanes. Organic Letters, 2006, 8, 2205-2208.	4.6	43
34	Role of redox centre in charge transport investigated by novel self-assembled conjugated polymer molecular junctions. Nature Communications, 2015, 6, 7478.	12.8	43
35	Azadioxatriangulenium: a long fluorescence lifetime fluorophore for large biomolecule binding assay. Methods and Applications in Fluorescence, 2013, 1, 025001.	2.3	42
36	Trihydroxytrioxatrianguleneâ€"An Extended Fluorescein and a Ratiometric pH Sensor. Chemistry - A European Journal, 2010, 16, 2992-2996.	3.3	38

#	Article	IF	Citations
37	Base-Assisted One-Pot Synthesis of N,N $\hat{a}\in^2$,N $\hat{a}\in^3$ -Triaryltriazatriangulenium Dyes: Enhanced Fluorescence Efficiency by Steric Constraints. Journal of Organic Chemistry, 2012, 77, 5606-5612.	3.2	38
38	Molecular Junctions Based on SAMs of Cruciform Oligo(phenylene ethynylene)s. Langmuir, 2012, 28, 4016-4023.	3.5	38
39	Solvent Effects and Driving Forces in Pillararene Inclusion Complexes. Journal of Physical Chemistry B, 2015, 119, 6711-6720.	2.6	38
40	lon-Pair Oligomerization of Chromogenic Triangulenium Cations with Cyanostar-Modified Anions That Controls Emission in Hierarchical Materials. Journal of the American Chemical Society, 2017, 139, 6226-6233.	13.7	37
41	Soluble and immobilized graphene oxide activates complement system differently dependent on surface oxidation state. Biomaterials, 2016, 78, 20-26.	11.4	35
42	Triazatriangulenium-based porous organic polymers for carbon dioxide capture. RSC Advances, 2015, 5, 90135-90143.	3.6	33
43	Preparation of Cyclobis(paraquat-p-phenylene)-Based [2]Rotaxanes Without Flexible Glycol Chains. Angewandte Chemie - International Edition, 2007, 46, 6093-6097.	13.8	32
44	Synthesis and Stability of <i>N</i> , <i>N</i> à€²â€Dialkylâ€1,13â€dimethoxyquinacridinium (DMQA ⁺ [4]Helicene with Multiple Redox States. ChemPlusChem, 2014, 79, 1030-1035.);A 2.8	32
45	Evidence of Strong Hydration and Significant Tilt of Amphiphilic [2]Rotaxane Molecules in Langmuir Films Studied by Synchrotron X-ray Reflectivity. Journal of Physical Chemistry B, 2005, 109, 1063-1066.	2.6	31
46	Simultaneous Increase in Brightness and Singlet Oxygen Generation of an Organic Photosensitizer by Nanocrystallization. Small, 2018, 14, e1803325.	10.0	31
47	Elimination of autofluorescence in fluorescence correlation spectroscopy using the AzaDiOxaTriAngulenium (ADOTA) fluorophore in combination with time-correlated single-photon counting (TCSPC). Analytical and Bioanalytical Chemistry, 2013, 405, 4887-4894.	3.7	29
48	Triazatriangulene as Binding Group for Molecular Electronics. Langmuir, 2014, 30, 14868-14876.	3.5	29
49	Molecular Heterojunctions of Oligo(phenylene ethynylene)s with Linear to Cruciform Framework. Advanced Functional Materials, 2015, 25, 1700-1708.	14.9	29
50	Azadioxatriangulenium and Diazaoxatriangulenium: Quantum Yields and Fundamental Photophysical Properties. ACS Omega, 2017, 2, 193-203.	3.5	29
51	A Fluorescence Intensity Ratiometric Fiber Optics–Based Chemical Sensor for Monitoring pH. Advanced Materials Technologies, 2018, 3, 1800205.	5.8	29
52	Ultrabright Fluorescent Organic Nanoparticles Based on Smallâ€Molecule Ionic Isolation Lattices**. Angewandte Chemie - International Edition, 2021, 60, 9450-9458.	13.8	29
53	Gate‶unable Ultrahigh Photoresponsivity of 2D Heterostructures Based on Few Layer MoS ₂ and Solutionâ€Processed rGO. Advanced Electronic Materials, 2015, 1, 1500267.	5.1	28
54	The geometry and structural properties of the 4,8,12-trioxa-4,8,12,12c-tetrahydrodibenzo[cd,mn]pyrene system in the cationic state. Structures of a planar organic cation with various monovalent and divalent anions. Acta Crystallographica Section B: Structural Science, 1999, 55, 410-423.	1.8	27

#	Article	IF	CITATIONS
55	Photophysics of trioxatriangulenium ion. Electrophilic reactivity in the ground state and excited singlet state. Photochemical and Photobiological Sciences, 2002, $1,763-773$.	2.9	27
56	Diazaoxatriangulenium: synthesis of reactive derivatives and conjugation to bovine serum albumin. Organic and Biomolecular Chemistry, 2016, 14, 1091-1101.	2.8	27
57	Direct probing of ion pair formation using a symmetric triangulenium dye. Photochemical and Photobiological Sciences, 2011, 10, 1963-1973.	2.9	26
58	Large area, soft crystalline thin films of N,N′,N′′-trialkyltriazatriangulenium salts with homeotropic alignment of the discotic cores in a lamellar lattice. Journal of Materials Chemistry, 2012, 22, 4797.	6.7	26
59	Biocompatible Microporous Organically Modified Silicate Material with Rapid Internal Diffusion of Protons. ACS Sensors, 2018, 3, 692-699.	7.8	26
60	Columnar Self-Assembly and Alignment of Planar Carbenium Ions in Langmuirâ-'Blodgett Films. Langmuir, 2011, 27, 792-799.	3.5	25
61	Tuning the p <i>K</i> _a of a pH Responsive Fluorophore and the Consequences for Calibration of Optical Sensors Based on a Single Fluorophore but Multiple Receptors. ACS Sensors, 2019, 4, 764-773.	7.8	24
62	Anion effects on the cyclobis(paraquat-p-phenylene) host. Chemical Communications, 2012, 48, 5157.	4.1	23
63	A New Class of Extended Tetrathiafulvalene Cruciform Molecules for Molecular Electronics with Dithiafulveneâ€4,5â€Dithiolate Anchoring Groups. Advanced Materials, 2013, 25, 405-409.	21.0	23
64	Rational Design of Bright Long Fluorescence Lifetime Dyad Fluorophores for Single Molecule Imaging and Detection. Journal of the American Chemical Society, 2021, 143, 1377-1385.	13.7	22
65	Bent Structure and Dynamic Stereochemistry of Chiral Acridinium Cations. Journal of Organic Chemistry, 2003, 68, 6304-6308.	3.2	21
66	Close Columnar Packing of Triangulenium Ions in Langmuir Films. Langmuir, 2009, 25, 3584-3592.	3.5	21
67	An Optical pH Sensor Based on Diazaoxatriangulenium and Isopropylâ€Bridged Diazatriangulenium Covalently Bound in a Composite Sol–Gel. Advanced Materials Technologies, 2019, 4, 1800561.	5.8	21
68	Templation and Concentration Drive Conversion Between a Fe ^{II} ₁₂ L ₁₂ Pseudoicosahedron, a Fe ^{II} ₄ L ₄ Tetrahedron, and a Fe ^{II} ₂ L ₃ Helicate. Journal of the American Chemical Society, 2022, 144, 1106-1112.	13.7	21
69	Charge Transfer and Current Fluctuations in Single Layer Graphene Transistors Modified by Selfâ€Assembled C ₆₀ Adlayers. Small, 2013, 9, 2420-2426.	10.0	20
70	Fluorescent biosensor for the detection of hyaluronidase: intensity-based ratiometric sensing and fluorescence lifetime-based sensing using a long lifetime azadioxatriangulenium (ADOTA) fluorophore. Analytical and Bioanalytical Chemistry, 2016, 408, 3811-3821.	3.7	19
71	Extended Triangulenium lons: Syntheses and Characterization of Benzo-Bridged Dioxa- and Diazatriangulenium Dyes. Journal of Organic Chemistry, 2019, 84, 2556-2567.	3.2	19
72	Racemization Mechanisms and Electronic Circular Dichroism of [4]Heterohelicenium Dyes: A Theoretical Study. Journal of Physical Chemistry A, 2011, 115, 12025-12033.	2.5	18

#	Article	IF	CITATIONS
73	Counterions Control Whether Selfâ€Assembly Leads to Formation of Stable and Wellâ€Defined Unilamellar Nanotubes or Nanoribbons and Nanorods. Chemistry - A European Journal, 2014, 20, 6853-6856.	3.3	18
74	Determination of protonation states of iminosugar–enzyme complexes using photoinduced electron transfer. Chemical Science, 2017, 8, 7383-7393.	7.4	17
75	Structure of the Buried Metalâ^'Molecule Interface in Organic Thin Film Devices. Nano Letters, 2009, 9, 1052-1057.	9.1	16
76	Graphene Oxide as a Monoatomic Blocking Layer. ACS Nano, 2012, 6, 8022-8029.	14.6	16
77	Fluorescence pH Probes Based on Photoinduced Electron Transfer Quenching of Long Fluorescence Lifetime Triangulenium Dyes. ChemPhotoChem, 2019, 3, 233-242.	3.0	16
78	Electrical annealing and temperature dependent transversal conduction in multilayer reduced graphene oxide films for solid-state molecular devices. Physical Chemistry Chemical Physics, 2012, 14, 14277.	2.8	15
79	Azadioxatriangulenium: Synthesis and Photophysical Properties of Reactive Dyes for Bioconjugation. European Journal of Organic Chemistry, 2015, 2015, 6351-6358.	2.4	15
80	Facile synthesis of hierarchical triazine-based porous carbons for hydrogen storage. Microporous and Mesoporous Materials, 2016, 224, 129-134.	4.4	15
81	Fluorometric Recognition of Nucleotides within a Waterâ€Soluble Tetrahedral Capsule. Angewandte Chemie, 2019, 131, 4244-4248.	2.0	15
82	Obtaining Enhanced Circular Dichroism in [4]Heterohelicenium Analogues. Journal of Physical Chemistry A, 2012, 116, 8744-8752.	2.5	14
83	Synthesis, optical properties and lamellar self-organization of new N,N′,N″-trialkyl-triazatriangulenium tetrafluoroborate salts. Dyes and Pigments, 2013, 98, 297-303.	3.7	14
84	Self-Assembly and Near Perfect Macroscopic Alignment of Fluorescent Triangulenium Salt in Spin-Cast Thin Films on PTFE. Langmuir, 2013, 29, 6728-6736.	3.5	14
85	Stepwise Reduction of Immobilized Monolayer Graphene Oxides. Chemistry of Materials, 2013, 25, 4839-4848.	6.7	12
86	Synthesis and Structures of <i>N</i> â€Alkylâ€1,13â€dimethoxychromeno―[2,3,4â€ <i>kl</i>]acridinium Salts: T Missing Azaoxa[4]helicenium. Chemistry - A European Journal, 2014, 20, 6391-6400.	he 3.3	12
87	Azadioxatriangulenium: exploring the effect of a 20 ns fluorescence lifetime in fluorescence anisotropy measurements. Methods and Applications in Fluorescence, 2015, 3, 045001.	2.3	12
88	Steady state and time resolved fluorescence studies of azadioxatriangulenium (ADOTA) fluorophore in silica and PVA thin films. Dyes and Pigments, 2015, 117, 16-23.	3.7	12
89	What is Best Strategy for Water Soluble Fluorescence Dyes?—A Case Study Using Long Fluorescence Lifetime DAOTA Dyes**. Chemistry - A European Journal, 2020, 26, 15969-15976.	3.3	12
90	Gold nanoparticles assembled with dithiocarbamate-anchored molecular wires. Scientific Reports, 2015, 5, 15273.	3.3	11

#	Article	IF	Citations
91	Facile Synthesis of Mildly Oxidized Graphite Inks for Screenâ€Printing of Highly Conductive Electrodes. Advanced Engineering Materials, 2019, 21, 1801304.	3.5	11
92	Luminescence Spectroscopy of Rhodamine Homodimer Dications <i>i>in Vacuo</i> Reveals Strong Dyeâ€Dye Interactions. ChemPhysChem, 2019, 20, 533-537.	2.1	11
93	Evaluation of Ebselen-azadioxatriangulenium as redox-sensitive fluorescent intracellular probe and as indicator within a planar redox optode. Dyes and Pigments, 2020, 173, 107866.	3.7	11
94	Synthesis and fluorescence properties of DMCX+â€"a stable oxygen-bridged [4]helicenium dye. Tetrahedron Letters, 2013, 54, 587-590.	1.4	10
95	Generating multiple-pulse bursts for enhanced fluorescence detection. Methods and Applications in Fluorescence, 2014, 2, 024009.	2.3	10
96	A fluorescence study of isofagomine protonation in \hat{l}^2 -glucosidase. Organic and Biomolecular Chemistry, 2015, 13, 6562-6566.	2.8	10
97	Quantifying and sorting of gold nanoparticle dimers from complex reaction mixtures using flow cytometry. Nano Research, 2016, 9, 3093-3098.	10.4	9
98	Assessing The Key Photophysical Properties of Triangulenium Dyes for DNA Binding by Alteration of the Fluorescent Core. Chemistry - A European Journal, 2021, 27, 2523-2536.	3.3	9
99	Fluorescent and Highly Stable Unimodal DMPC Based Unilamellar Vesicles Formed by Spontaneous Curvature. Langmuir, 2012, 28, 8608-8615.	3.5	8
100	Nanoparticle metrology of silica colloids and super-resolution studies using the ADOTA fluorophore. Measurement Science and Technology, 2016, 27, 045007.	2.6	8
101	Tetramethoxyâ€Aminorhodamine (TMARh): A Bichromophore, an Improved Fluorophore, and a pH Switch. Chemistry - A European Journal, 2016, 22, 7046-7049.	3.3	8
102	Monolayered Graphene Oxide as a Low Contact Resistance Protection Layer in Alkanethiol Solid-State Devices. Journal of Physical Chemistry C, 2018, 122, 9731-9737.	3.1	8
103	Diamine anchored molecular junctions of oligo(phenylene ethynylene) cruciform. Chinese Chemical Letters, 2018, 29, 271-275.	9.0	8
104	High-Quality Reduced Graphene Oxide Electrodes for Sub-Kelvin Studies of Molecular Monolayer Junctions. Journal of Physical Chemistry C, 2018, 122, 25102-25109.	3.1	8
105	Synthesis of Novel Amphiphilic Azobenzenes and X-ray Scattering Studies of Their Langmuir Monolayers. Langmuir, 2008, 24, 3223-3227.	3.5	7
106	Aminorhodamine (ARh): A Bichromophore with Three Emission Bands in Low Temperature Glasses. Chemistry - A European Journal, 2015, 21, 8521-8529.	3.3	7
107	Sandwich type plasmonic platform for MEF using silver fractals. Nanoscale, 2015, 7, 17729-17734.	5.6	7
108	Emissive Photoconversion Products of an Amino-triangulenium Dye. Journal of Physical Chemistry A, 2016, 120, 3554-3561.	2.5	6

#	Article	IF	CITATIONS
109	Utilizing Selective Chlorination to Synthesize New Triangulenium Dyes. Journal of Organic Chemistry, 2021, 86, 17002-17010.	3.2	6
110	Quantitative Energy Transfer in Organic Nanoparticles Based on Small-Molecule Ionic Isolation Lattices for UV Light Harvesting. ACS Applied Nano Materials, 2022, 5, 13887-13893.	5.0	6
111	Microwave-assisted McMurry polymerization utilizing low-valent titanium for the synthesis of poly 2,6-[1,5-bis(dodecyloxy)naphthylene vinylene] (PNV). Tetrahedron Letters, 2009, 50, 7374-7378.	1.4	5
112	Synthesis and properties of sulfur-functionalized triarylmethylium, acridinium and triangulenium dyes. Beilstein Journal of Organic Chemistry, 2019, 15, 2133-2141.	2.2	5
113	Spectral shifts of BODIPY derivatives: a simple continuous model. Photochemical and Photobiological Sciences, 2019, 18, 1315-1323.	2.9	5
114	Detection of hyaluronidase activity using fluorescence lifetime correlation spectroscopy to separate diffusing species and eliminate autofluorescence. Proceedings of SPIE, 2013, , .	0.8	4
115	Fluorination Induced Donor to Acceptor Transformation in A1–D–A2–D–A1-Type Photovoltaic Small Molecules. Frontiers in Chemistry, 2018, 6, 384.	3.6	4
116	Synthesis of Isofagomine Derivatives as New Fluorescence pH Indicators/Glycosidase Inhibitors. European Journal of Organic Chemistry, 2020, 2020, 3989-3996.	2.4	4
117	Long fluorescence lifetime triangulenium dyes in imaging and fluorescence polarization assay. Methods in Enzymology, 2020, 640, 249-265.	1.0	4
118	Local charge transport properties of hydrazine reduced monolayer graphene oxide sheets prepared under pressure condition. Applied Physics Letters, 2014, 105, 093109.	3.3	3
119	ConA-based glucose sensing using the long-lifetime azadioxatriangulenium fluorophore. Proceedings of SPIE, 2014, , .	0.8	2
120	Ultrabright Fluorescent Organic Nanoparticles Based on Smallâ€Molecule Ionic Isolation Lattices**. Angewandte Chemie, 2021, 133, 9536-9544.	2.0	2
121	Innentitelbild: Fluorometric Recognition of Nucleotides within a Waterâ€Soluble Tetrahedral Capsule (Angew. Chem. 13/2019). Angewandte Chemie, 2019, 131, 4110-4110.	2.0	1
122	Fluorescence Studies of a Long Lifetime Fluorophore, ADOTA in Silica and PVA Thin Films. Biophysical Journal, 2015, 108, 623a.	0.5	0
123	Fluorescent Biosensor for Hyaluronidase: Intensity Based Ratiometric Sensing and Time-Gated Detection using a Long Lifetime Azadioxatriangulenium (ADOTA) Fluorophore. Biophysical Journal, 2016, 110, 337a.	0.5	0
124	Novel plasmonic platform for ultra-sensitive detection and diagnostics. , 2016, , .		0
125	Fluorescence pH Probes Based On Photoinduced Electron Transfer Quenching of Long Fluorescence Lifetime Triangulenium Dyes. ChemPhotoChem, 2019, 3, 213-213.	3.0	0
126	Intrinsic anti-Stokes emission in living HeLa cells. PLoS ONE, 2020, 15, e0230441.	2.5	0

#	Article	lF	CITATIONS
127	Frontispiece: Ultrabright Fluorescent Organic Nanoparticles Based on Smallâ€Molecule Ionic Isolation Lattices. Angewandte Chemie - International Edition, 2021, 60, .	13.8	O
128	Frontispiz: Ultrabright Fluorescent Organic Nanoparticles Based on Smallâ€Molecule Ionic Isolation Lattices. Angewandte Chemie, 2021, 133, .	2.0	0
129	Intrinsic anti-Stokes emission in living HeLa cells. , 2020, 15, e0230441.		O
130	Intrinsic anti-Stokes emission in living HeLa cells. , 2020, 15, e0230441.		0
131	Intrinsic anti-Stokes emission in living HeLa cells. , 2020, 15, e0230441.		O
132	Intrinsic anti-Stokes emission in living HeLa cells. , 2020, 15, e0230441.		0
133	Intrinsic anti-Stokes emission in living HeLa cells. , 2020, 15, e0230441.		O
134	Intrinsic anti-Stokes emission in living HeLa cells. , 2020, 15, e0230441.		0
135	Intrinsic anti-Stokes emission in living HeLa cells. , 2020, 15, e0230441.		O
136	Intrinsic anti-Stokes emission in living HeLa cells. , 2020, 15, e0230441.		0