Shannon K Yee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2931357/publications.pdf

Version: 2024-02-01

304743 243625 2,044 51 22 44 h-index citations g-index papers 53 53 53 2294 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Material and manufacturing cost considerations for thermoelectrics. Renewable and Sustainable Energy Reviews, 2014, 32, 313-327.	16.4	386
2	\$ per W metrics for thermoelectric power generation: beyond ZT. Energy and Environmental Science, 2013, 6, 2561-2571.	30.8	201
3	Thermoelectric power factor optimization in PEDOT:PSS tellurium nanowire hybrid composites. Physical Chemistry Chemical Physics, 2013, 15, 4024.	2.8	188
4	Understanding the Effects of Molecular Dopant on nâ€√ype Organic Thermoelectric Properties. Advanced Energy Materials, 2019, 9, 1900817.	19.5	118
5	Effect of Heteroatom and Doping on the Thermoelectric Properties of Poly(3â€alkylchalcogenophenes). Advanced Energy Materials, 2018, 8, 1802419.	19.5	99
6	A Textileâ€Integrated Polymer Thermoelectric Generator for Body Heat Harvesting. Advanced Materials Technologies, 2019, 4, 1800708.	5.8	92
7	Fiber Reinforced Layered Dielectric Nanocomposite. Advanced Functional Materials, 2019, 29, 1900056.	14.9	64
8	Quantifying charge carrier localization in chemically doped semiconducting polymers. Nature Materials, 2021, 20, 1414-1421.	27.5	61
9	Radial thermoelectric generator fabricated from n―and pâ€ŧype conducting polymers. Journal of Applied Polymer Science, 2017, 134, .	2.6	52
10	Design of a polymer thermoelectric generator using radial architecture. Journal of Applied Physics, 2016, 119, .	2.5	47
11	Simultaneous measurement of in-plane and through-plane thermal conductivity using beam-offset frequency domain thermoreflectance. Review of Scientific Instruments, 2017, 88, 014902.	1.3	43
12	Conductive, Solutionâ€Processed Dioxythiophene Copolymers for Thermoelectric and Transparent Electrode Applications. Advanced Energy Materials, 2019, 9, 1900395.	19.5	43
13	Significant Enhancement of the Electrical Conductivity of Conjugated Polymers by Post-Processing Side Chain Removal. Journal of the American Chemical Society, 2022, 144, 1351-1360.	13.7	42
14	Simultaneous Enhancement in Electrical Conductivity and Thermopower of nâ€√ype NiETT/PVDF Composite Films by Annealing. Advanced Functional Materials, 2018, 28, 1803275.	14.9	39
15	Cost Scaling of a Real-World Exhaust Waste Heat Recovery Thermoelectric Generator: A Deeper Dive. Journal of Electronic Materials, 2016, 45, 1751-1761.	2.2	38
16	Systematic Power Factor Enhancement in nâ€Type NiETT/PVDF Composite Films. Advanced Functional Materials, 2018, 28, 1801620.	14.9	34
17	Aqueous Zinc Compounds as Residual Antimicrobial Agents for Textiles. ACS Applied Materials & Samp; Interfaces, 2018, 10, 7709-7716.	8.0	31
18	Interconnect patterns for printed organic thermoelectric devices with large fill factors. Journal of Applied Physics, 2017, 122, .	2.5	28

#	Article	IF	Citations
19	A suspended 3-omega technique to measure the anisotropic thermal conductivity of semiconducting polymers. Review of Scientific Instruments, 2018, 89, 114905.	1.3	28
20	Evaluation of a Silicon 90Sr Betavoltaic Power Source. Scientific Reports, 2016, 6, 38182.	3.3	27
21	Metalloâ€organic nâ€type thermoelectrics: Emphasizing advances in nickelâ€ethenetetrathiolates. Journal of Applied Polymer Science, 2017, 134, .	2.6	26
22	Progress in Nickelâ€Coordinated Polymers as Intrinsically Conducting nâ€Type Thermoelectric Materials. Advanced Electronic Materials, 2019, 5, 1800884.	5.1	23
23	Near-field photonic thermal diode based on hBN and InSb films. Applied Physics Letters, 2021, 119, .	3.3	23
24	Continuous electrochemical refrigeration based on the Brayton cycle. Nature Energy, 2022, 7, 320-328.	39.5	23
25	A microbridge heater for low power gas sensing based on the 3-Omega technique. Sensors and Actuators A: Physical, 2015, 233, 231-238.	4.1	22
26	A dual-stage sodium thermal electrochemical converter (Na-TEC). Journal of Power Sources, 2017, 371, 217-224.	7.8	22
27	Techno-Economics of Cogeneration Approaches for Combined Power and Desalination From Concentrated Solar Power. Journal of Solar Energy Engineering, Transactions of the ASME, 2019, 141, .	1.8	18
28	Microstructure and heteroatom dictate the doping mechanism and thermoelectric properties of poly(alkyl-chalcogenophenes). Applied Physics Letters, 2021, 118, 233301.	3.3	18
29	Inducing planarity in redox-active conjugated polymers with solubilizing 3,6-dialkoxy-thieno[3,2-b]thiophenes (DOTTs) for redox and solid-state conductivity applications. Journal of Materials Chemistry C, 2020, 8, 7463-7475.	5.5	17
30	An empirical model to predict temperatureâ€dependent thermal conductivity of amorphous polymers. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 1160-1170.	2.1	16
31	Structure, properties and applications of thermoelectric polymers. Journal of Applied Polymer Science, 2017, 134, .	2.6	16
32	Vapor Phase Infiltration Doping of the Semiconducting Polymer Poly(aniline) with TiCl ₄ + H ₂ O: Mechanisms, Reaction Kinetics, and Electrical and Optical Properties. ACS Applied Polymer Materials, 2021, 3, 720-729.	4.4	16
33	Electrical Conductivity, Thermal Behavior, and Seebeck Coefficient of Conductive Films for Printed Thermoelectric Energy Harvesting Systems. Journal of Electronic Materials, 2016, 45, 5561-5569.	2.2	14
34	Thermoelectric Performance of nâ€√ype Poly(Niâ€tetrathiooxalate) as a Counterpart to Poly(Niâ€ethenetetrathiolate): NiTTO versus NiETT. Advanced Electronic Materials, 2019, 5, 1900066.	5.1	14
35	Effect of Evanescent Waves on the Dark Current of Thermophotovoltaic Cells. Nanoscale and Microscale Thermophysical Engineering, 2020, 24, 1-19.	2.6	14
36	Electron transport in a sequentially doped naphthalene diimide polymer. Materials Advances, 2020, 1, 1829-1834.	5.4	14

3

#	Article	IF	CITATIONS
37	Spatial profiles of photon chemical potential in near-field thermophotovoltaic cells. Journal of Applied Physics, 2021, 129, .	2.5	13
38	Thermoelectric and Charge Transport Properties of Solution-Processable and Chemically Doped Dioxythienothiophene Copolymers. ACS Applied Polymer Materials, 2021, 3, 2316-2324.	4.4	12
39	Improved performance of a near-field thermophotovoltaic device by a back gapped reflector. Solar Energy Materials and Solar Cells, 2022, 237, 111562.	6.2	10
40	Limitations of Diels–Alder Dynamic Covalent Networks as Thermal Conductivity Switches. ACS Applied Polymer Materials, 2022, 4, 1218-1224.	4.4	9
41	Thermal modeling and efficiency of a dual-stage sodium heat engine. Applied Thermal Engineering, 2018, 145, 603-609.	6.0	8
42	Single-Cycle Atomic Layer Deposition on Bulk Wood Lumber for Managing Moisture Content, Mold Growth, and Thermal Conductivity. Langmuir, 2020, 36, 1633-1641.	3.5	6
43	Electrolyte engineering can improve electrochemical heat engine and refrigeration efficiency. Trends in Chemistry, 2022, 4, 172-174.	8.5	6
44	Metal-coated glass microfiber for concentration detection in gas mixtures using the 3-Omega excitation method. Sensors and Actuators A: Physical, 2016, 250, 243-249.	4.1	5
45	System dynamics and metrics of an electrochemical refrigerator based on the Brayton cycle. Cell Reports Physical Science, 2022, 3, 100774.	5.6	5
46	Iron(III) Dopant Counterions Affect the Charge-Transport Properties of Poly(Thiophene) and Poly(Dialkoxythiophene) Derivatives. ACS Applied Materials & Samp; Interfaces, 2022, 14, 29039-29051.	8.0	5
47	Reply to the †comment on "\$ per W metrics for thermoelectric power generation: beyond ZTâ€â€™ by G. Nunes, Jr, Energy Environ. Sci., 2014, 7, DOI: 10.1039/C3EE43700K. Energy and Environmental Science, 2014, 7, 3441-3442.	30.8	4
48	A Costâ€Performance Analysis of a Sodium Heat Engine for Distributed Concentrating Solar Power. Advanced Sustainable Systems, 2020, 4, 1900104.	5.3	3
49	Techno-Economic Analysis of Dual-Stage Sodium Thermal Electrochemical Converter (Na-TEC) Power Block for Distributed CSP. , 2018, , .		1
50	Brazings for Metal-Ceramic Joining in Sodium Thermal Electrochemical Converter (Na-TEC) Devices. , 2018, , .		0
51	Impact of Porosity and Boundary Scattering on Thermal Transport in Diameter-Modulated Nanowires. ACS Applied Materials & Interfaces, 2022, 14, 1740-1746.	8.0	0