
Gerard Eberl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2931132/publications.pdf Version: 2024-02-01

CEDADO FREDI

#	Article	IF	CITATIONS
1	Group 3 innate lymphoid cells produce the growth factor HB-EGF to protect the intestine from TNF-mediated inflammation. Nature Immunology, 2022, 23, 251-261.	7.0	28
2	Bacterial sensing via neuronal Nod2 regulates appetite and body temperature. Science, 2022, 376, eabj3986.	6.0	76
3	The neuropeptide VIP potentiates intestinal innate type 2 and type 3 immunity in response to feeding. Mucosal Immunology, 2022, 15, 629-641.	2.7	21
4	ZBTB46 defines and regulates ILC3s that protect the intestine. Nature, 2022, 609, 159-165.	13.7	33
5	Metabolic regulation by PPARÎ ³ is required for IL-33-mediated activation of ILC2s in lung and adipose tissue. Mucosal Immunology, 2021, 14, 585-593.	2.7	31
6	ILC3s control splenic cDC homeostasis via lymphotoxin signaling. Journal of Experimental Medicine, 2021, 218, .	4.2	6
7	Dysregulation of ILC3s unleashes progression and immunotherapy resistance in colon cancer. Cell, 2021, 184, 5015-5030.e16.	13.5	102
8	Antigen-presenting innate lymphoid cells orchestrate neuroinflammation. Nature, 2021, 600, 707-712.	13.7	35
9	Tofacitinib treatment alters mucosal immunity and gut microbiota during experimental arthritis. Clinical and Translational Medicine, 2020, 10, e163.	1.7	5
10	Effect of gut microbiota on depressive-like behaviors in mice is mediated by the endocannabinoid system. Nature Communications, 2020, 11, 6363.	5.8	193
11	Imprinting of the immune system by the microbiota early in life. Mucosal Immunology, 2020, 13, 183-189.	2.7	153
12	Beware of whom you live with: Your intestinal IgA may depend on it. European Journal of Immunology, 2020, 50, 779-782.	1.6	1
13	Excess calorie intake early in life increases susceptibility to colitis in adulthood. Nature Metabolism, 2019, 1, 1101-1109.	5.1	28
14	A circadian clock is essential for homeostasis of group 3 innate lymphoid cells in the gut. Science Immunology, 2019, 4, .	5.6	71
15	A Weaning Reaction to Microbiota Is Required for Resistance to Immunopathologies in the Adult. Immunity, 2019, 50, 1276-1288.e5.	6.6	379
16	Innate lymphoid cells support regulatory T cells in the intestine through interleukin-2. Nature, 2019, 568, 405-409.	13.7	199
17	S100A4 Protein Is Essential for the Development of Mature Microfold Cells in Peyer's Patches. Cell Reports, 2019, 29, 2823-2834.e7.	2.9	25
18	Type 3 regulatory T cells at the interface of symbiosis. Journal of Microbiology, 2018, 56, 163-171.	1.3	22

GERARD EBERL

#	Article	IF	CITATIONS
19	The microbiota, a necessary element of immunity. Comptes Rendus - Biologies, 2018, 341, 281-283.	0.1	15
20	Robustness in living organisms is homeostasis. Seminars in Immunology, 2018, 36, 56-57.	2.7	2
21	Towards a General Theory of Immunity?. Trends in Immunology, 2018, 39, 261-263.	2.9	28
22	Control of pathogens and microbiota by innate lymphoid cells. Microbes and Infection, 2018, 20, 317-322.	1.0	6
23	Mouse models for the study of fate and function of innate lymphoid cells. European Journal of Immunology, 2018, 48, 1271-1280.	1.6	21
24	Innate Lymphoid Cells: 10 Years On. Cell, 2018, 174, 1054-1066.	13.5	1,467
25	GAPs in early life facilitate immune tolerance. Science Immunology, 2017, 2, .	5.6	5
26	Immunity by equilibrium. Nature Reviews Immunology, 2016, 16, 524-532.	10.6	161
27	Microorganisms as scaffolds of host individuality: an eco-immunity account of the holobiont. Biology and Philosophy, 2016, 31, 819-837.	0.7	22
28	Notch regulates Th17 differentiation and controls trafficking of IL-17 and metabolic regulators within Th17 cells in a context-dependent manner. Scientific Reports, 2016, 6, 39117.	1.6	25
29	The Spectrum and Regulatory Landscape of Intestinal Innate Lymphoid Cells Are Shaped by the Microbiome. Cell, 2016, 166, 1231-1246.e13.	13.5	465
30	Glial-cell-derived neuroregulators control type 3 innate lymphoid cells and gut defence. Nature, 2016, 535, 440-443.	13.7	272
31	Innate lymphoid cells in defense, immunopathology and immunotherapy. Nature Immunology, 2016, 17, 755-757.	7.0	54
32	Innate lymphoid cells: A new paradigm in immunology. Science, 2015, 348, aaa6566.	6.0	683
33	The microbiota regulates type 2 immunity through RORγt ⁺ T cells. Science, 2015, 349, 989-993.	6.0	709
34	Group 3 innate lymphoid cells mediate intestinal selection of commensal bacteria–specific CD4 ⁺ T cells. Science, 2015, 348, 1031-1035.	6.0	421
35	An optimized protocol for isolating lymphoid stromal cells from the intestinal lamina propria. Journal of Immunological Methods, 2015, 421, 14-19.	0.6	20
36	Development and regulation of RORγt ⁺ innate lymphoid cells. FEBS Letters, 2014, 588, 4176-4181.	1.3	52

GERARD EBERL

#	Article	IF	CITATIONS
37	Activation of Type 3 Innate Lymphoid Cells and Interleukin 22 Secretion in the Lungs During Streptococcus pneumoniae Infection. Journal of Infectious Diseases, 2014, 210, 493-503.	1.9	137
38	Innate Lymphoid Cells in Inflammation and Immunity. Immunity, 2014, 41, 366-374.	6.6	322
39	Nonredundant Function of Soluble LTα ₃ Produced by Innate Lymphoid Cells in Intestinal Homeostasis. Science, 2013, 342, 1243-1246.	6.0	227
40	Innate lymphoid cells — a proposal for uniform nomenclature. Nature Reviews Immunology, 2013, 13, 145-149.	10.6	2,054
41	Animals in a bacterial world, a new imperative for the life sciences. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3229-3236.	3.3	2,181
42	Innate lymphoid cells regulate CD4+ T-cell responses to intestinal commensal bacteria. Nature, 2013, 498, 113-117.	13.7	639
43	Notch, Id2, and RORÎ ³ t sequentially orchestrate the fetal development of lymphoid tissue inducer cells. Journal of Experimental Medicine, 2012, 209, 729-740.	4.2	215
44	The development of LTi cells. Current Opinion in Immunology, 2012, 24, 178-183.	2.4	55
45	Development and evolution of RORγt ⁺ cells in a microbe's world. Immunological Reviews, 2012, 245, 177-188.	2.8	58
46	Intestinal microbiota, evolution of the immune system and the bad reputation of pro-inflammatory immunity. Cellular Microbiology, 2011, 13, 653-659.	1.1	53
47	RORÎ ³ t+ innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota. Nature Immunology, 2011, 12, 320-326.	7.0	522
48	Lymphotoxinâ€Î² receptorâ€independent development of intestinal ILâ€22â€producing NKp46 ⁺ inn lymphoid cells. European Journal of Immunology, 2011, 41, 780-786.	ate 1.6	29
49	Microbiota-induced tertiary lymphoid tissues aggravate inflammatory disease in the absence of RORÎ ³ t and LTi cells. Journal of Experimental Medicine, 2011, 208, 125-134.	4.2	230
50	Restricted Microbiota and Absence of Cognate TCR Antigen Leads to an Unbalanced Generation of Th17 Cells. Journal of Immunology, 2011, 186, 1531-1537.	0.4	67
51	Bacteria and MAMP-induced morphogenesis of the immune system. Current Opinion in Immunology, 2010, 22, 448-454.	2.4	28
52	Close encounters of the second type. Nature, 2010, 464, 1285-1286.	13.7	14
53	IL-7 and IL-15 independently program the differentiation of intestinal CD3â^'NKp46+ cell subsets from Id2-dependent precursors. Journal of Experimental Medicine, 2010, 207, 273-280.	4.2	279
54	Lineage Relationship Analysis of RORγt ⁺ Innate Lymphoid Cells. Science, 2010, 330, 665-669.	6.0	464

GERARD EBERL

#	Article	IF	CITATIONS
55	The nuclear receptor PPARγ selectively inhibits Th17 differentiation in a T cell–intrinsic fashion and suppresses CNS autoimmunity. Journal of Experimental Medicine, 2009, 206, 2079-2089.	4.2	287
56	Skin and Peripheral Lymph Node Invariant NKT Cells Are Mainly Retinoic Acid Receptor-Related Orphan Receptor γt+ and Respond Preferentially under Inflammatory Conditions. Journal of Immunology, 2009, 183, 2142-2149.	0.4	140
57	Inflammation Recapitulates the Ontogeny of Lymphoid Stromal Cells. Journal of Immunology, 2009, 182, 5789-5799.	0.4	112
58	The Key Role of Segmented Filamentous Bacteria in the Coordinated Maturation of Gut Helper T Cell Responses. Immunity, 2009, 31, 677-689.	6.6	1,252
59	Microbial Flora Drives Interleukin 22 Production in Intestinal NKp46+ Cells that Provide Innate Mucosal Immune Defense. Immunity, 2008, 29, 958-970.	6.6	981
60	Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature, 2008, 456, 507-510.	13.7	920
61	In vivo equilibrium of proinflammatory IL-17+ and regulatory IL-10+ Foxp3+ RORγt+ T cells. Journal of Experimental Medicine, 2008, 205, 1381-1393.	4.2	491
62	Critical role of ROR-Î ³ t in a new thymic pathway leading to IL-17-producing invariant NKT cell differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19845-19850.	3.3	214
63	Mature natural killer cell and lymphoid tissue–inducing cell development requires Id2-mediated suppression of E protein activity. Journal of Experimental Medicine, 2007, 204, 1119-1130.	4.2	331
64	From induced to programmed lymphoid tissues: the long road to preempt pathogens. Trends in Immunology, 2007, 28, 423-428.	2.9	30
65	Inducible lymphoid tissues in the adult gut: recapitulation of a fetal developmental pathway?. Nature Reviews Immunology, 2005, 5, 413-420.	10.6	121
66	Thymic Origin of Intestinal ÂÂ T Cells Revealed by Fate Mapping of RORÂt+ Cells. Science, 2004, 305, 248-251.	6.0	457
67	An essential function for the nuclear receptor $ROR^{\hat{1}3}t$ in the generation of fetal lymphoid tissue inducer cells. Nature Immunology, 2004, 5, 64-73.	7.0	885
68	General method for the modification of different BAC types and the rapid generation of BAC transgenic mice. Genesis, 2004, 38, 39-50.	0.8	61
69	The role of the nuclear hormone receptor ROR��t in the development of lymph nodes and Peyer's patches. Immunological Reviews, 2003, 195, 81-90.	2.8	184