
Robert E Maleczka Jr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2931117/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Remarkably Selective Iridium Catalysts for the Elaboration of Aromatic C-H Bonds. Science, 2002, 295, 305-308.	6.0	1,032
2	Câ^'H Activation/Borylation/Oxidation:Â A One-Pot Unified Route To Meta-Substituted Phenols Bearing Ortho-/Para-Directing Groups. Journal of the American Chemical Society, 2003, 125, 7792-7793.	6.6	308
3	High-Throughput Optimization of Ir-Catalyzed C–H Borylation: A Tutorial for Practical Applications. Journal of the American Chemical Society, 2013, 135, 7572-7582.	6.6	194
4	A Traceless Directing Group for CH Borylation. Angewandte Chemie - International Edition, 2013, 52, 12915-12919.	7.2	168
5	Outer-Sphere Direction in Iridium C–H Borylation. Journal of the American Chemical Society, 2012, 134, 11350-11353.	6.6	167
6	Silyl Phosphorus and Nitrogen Donor Chelates for Homogeneous Ortho Borylation Catalysis. Journal of the American Chemical Society, 2014, 136, 14345-14348.	6.6	149
7	Ir-Catalyzed ortho-Borylation of Phenols Directed by Substrate–Ligand Electrostatic Interactions: A Combined Experimental/in Silico Strategy for Optimizing Weak Interactions. Journal of the American Chemical Society, 2017, 139, 7864-7871.	6.6	131
8	Electronic effects in iridium C–H borylations: insights from unencumbered substrates and variation of boryl ligand substituents. Chemical Communications, 2010, 46, 7724.	2.2	104
9	Boc Groups as Protectors and Directors for Ir-Catalyzed Câ^'H Borylation of Heterocycles. Journal of Organic Chemistry, 2009, 74, 9199-9201.	1.7	98
10	Total Synthesis of Proposed Amphidinolide A via a Highly Selective Ring-Closing Metathesis. Organic Letters, 2002, 4, 2841-2844.	2.4	90
11	Para-Selective, Iridium-Catalyzed C–H Borylations of Sulfated Phenols, Benzyl Alcohols, and Anilines Directed by Ion-Pair Electrostatic Interactions. Journal of the American Chemical Society, 2019, 141, 15483-15487.	6.6	88
12	Iridium-catalyzed borylation of thiophenes: versatile, synthetic elaboration founded on selective C–H functionalization. Tetrahedron, 2008, 64, 6103-6114.	1.0	82
13	Stille Couplings Catalytic in Tin: The "Snâ^'O―Approach. Journal of the American Chemical Society, 2001, 123, 3194-3204.	6.6	81
14	A New Approach for the Generation and Reaction of Organotin Hydrides:  The Development of Reactions Catalytic in Tin. Journal of Organic Chemistry, 1999, 64, 342-343.	1.7	80
15	Stille Couplings Catalytic in Tin:Â Beyond Proof-of-Principle. Journal of the American Chemical Society, 2000, 122, 384-385.	6.6	73
16	Getting the sterics just right: a five-coordinate iridium trisboryl complex that reacts with C–H bonds at room temperature. Chemical Communications, 2009, , 5731.	2.2	65
17	A Nozakiâ^'Hiyamaâ^'Kishi Ni(II)/Cr(II) Coupling Approach to the Phomactins. Organic Letters, 2001, 3, 1491-1494.	2.4	61
18	Harnessing C–H Borylation/Deborylation for Selective Deuteration, Synthesis of Boronate Esters, and Late Stage Functionalization. Journal of Organic Chemistry, 2015, 80, 8341-8353.	1.7	58

Robert E Maleczka Jr

#	Article	IF	CITATIONS
19	Microwave-Assisted One-Pot Hydrostannylation/Stille Couplings. Organic Letters, 2000, 2, 3655-3658.	2.4	54
20	One-Pot Borylation/Amination Reactions:  Syntheses of Arylamine Boronate Esters from Halogenated Arenes. Organic Letters, 2006, 8, 1407-1410.	2.4	54
21	Achieving High Ortho Selectivity in Aniline C–H Borylations by Modifying Boron Substituents. ACS Catalysis, 2018, 8, 6216-6223.	5.5	54
22	Stille Couplings Catalytic in Tin:  A "Snâ^'F―Approach. Organic Letters, 2001, 3, 4173-4176.	2.4	46
23	Development of a One-Pot Palladium-Catalyzed Hydrostannylation/Stille Coupling Protocol with Catalytic Amounts of Tin. Journal of Organic Chemistry, 1998, 63, 9622-9623.	1.7	40
24	Application of Fluoride-Catalyzed Silane Reductions of Tin Halides to the in Situ Preparation of Vinylstannanes. Journal of Organic Chemistry, 1999, 64, 5958-5965.	1.7	37
25	Bismuth Acetate as a Catalyst for the Sequential Protodeboronation of Di- and Triborylated Indoles. Organic Letters, 2016, 18, 1554-1557.	2.4	37
26	Cobalt-Catalyzed C–H Borylation of Alkyl Arenes and Heteroarenes Including the First Selective Borylations of Secondary Benzylic C–H Bonds. Organometallics, 2018, 37, 1567-1574.	1.1	34
27	C–H Borylation Catalysts that Distinguish Between Similarly Sized Substituents Like Fluorine and Hydrogen. Organic Letters, 2019, 21, 6388-6392.	2.4	33
28	Synthesis and Fluoride-Promoted Wittig Rearrangements of α-Alkoxysilanes. Organic Letters, 1999, 1, 1111-1113.	2.4	26
29	Stereoconvergent [1,2]- and [1,4]-Wittig Rearrangements of 2-Silyl-6-aryl-5,6-dihydropyrans: A Tale of Steric vs Electronic Regiocontrol of Divergent Pathways. Journal of Organic Chemistry, 2015, 80, 1163-1191.	1.7	24
30	A Catalytic Borylation/Dehalogenation Route to <i>o</i> -Fluoro Arylboronates. Organic Letters, 2014, 16, 6072-6075.	2.4	23
31	Reversible Borylene Formation from Ring Opening of Pinacolborane and Other Intermediates Generated from Five-Coordinate Tris-Boryl Complexes: Implications for Catalytic C–H Borylation. Organometallics, 2015, 34, 4732-4740.	1.1	22
32	Methyllithium-Promoted Wittig Rearrangements of α-Alkoxysilanes. Organic Letters, 1999, 1, 1115-1118.	2.4	20
33	α-Substituted acylsilanes via a highly selective [1,4]-Wittig rearrangement of α-benzyloxyallylsilane. Chemical Communications, 2006, , 2466-2468.	2.2	19
34	Reactions of vinyltributylgermanes and aryl halides under Heck conditions. Tetrahedron Letters, 2009, 50, 4407-4410.	0.7	19
35	[1,2]- and [1,4]-Wittig rearrangements of α-alkoxysilanes: effect of substitutions at both the migrating benzylic carbon and the terminal sp2 carbon of the allyl moiety. Tetrahedron, 2013, 69, 849-860.	1.0	16
36	A general diversity oriented synthesis of asymmetric double-decker shaped silsesquioxanes. Chemical Communications, 2019, 55, 8623-8626.	2.2	15

Robert E Maleczka Jr

#	Article	IF	CITATIONS
37	Steric Shielding Effects Induced by Intramolecular C–H···O Hydrogen Bonding: Remote Borylation Directed by Bpin Groups. ACS Catalysis, 2022, 12, 2694-2705.	5.5	14
38	Studies on the deprotonation and subsequent [1,4]-Wittig rearrangement of α-benzyloxyallylsilanes. Tetrahedron Letters, 2006, 47, 6565-6568.	0.7	11
39	Ni, Co, and Mo-catalyzed alkyne hydrostannations using Bu3SnCl/PMHS/KF/18-crown-6 as an in situ Bu3SnH source. Tetrahedron Letters, 2011, 52, 5285-5287.	0.7	11
40	EFFECT OF BYPRODUCTS FROM THE OZONATION OF PYRENE: BIPHENYL-2,2′,6,6′-TETRACARBALDEHYDE A BIPHENYL-2,2′,6,6′-TETRACARBOXYLIC ACID ON GAP JUNCTION INTERCELLULAR COMMUNICATION AND NEUTROPHIL FUNCTION. Environmental Toxicology and Chemistry, 2005, 24, 733.	ND 2.2	10
41	Separation of asymmetrically capped double-decker silsesquioxanes mixtures. Polyhedron, 2018, 155, 189-193.	1.0	10
42	Copper Puts Arenes in a Hard Position. Science, 2009, 323, 1572-1573.	6.0	9
43	Improved synthesis of electron deficient bipyridines. Tetrahedron Letters, 2016, 57, 2231-2232.	0.7	9
44	Enzymatic kinetic resolution of \hat{I} ±-hydroxysilanes. Tetrahedron: Asymmetry, 2010, 21, 527-534.	1.8	6
45	Non-Pd transition metal-catalyzed hydrostannations: Bu3SnF/PMHS as a tin hydride source. Tetrahedron, 2013, 69, 4000-4008.	1.0	6
46	HPLC Characterization of cis and trans Mixtures of Double-Decker Shaped Silsesquioxanes. Silicon, 2019, 11, 5-13.	1.8	6
47	One-Pot Iridium Catalyzed C–H Borylation/Sonogashira Cross-Coupling: Access to Borylated Aryl Alkynes. Molecules, 2020, 25, 1754.	1.7	5
48	Phase Behavior of <i>cis</i> – <i>trans</i> Mixtures of Double-Decker Shaped Silsesquioxanes for Processability Enhancement. ACS Applied Nano Materials, 2019, 2, 1223-1231.	2.4	4
49	Predictive Liquid Chromatography Separation for Mixtures of Functionalized Double-Decker Shaped Silsesquioxanes Based on HPLC Chromatograms. Industrial & Engineering Chemistry Research, 2019, 58, 403-410.	1.8	4
50	Aryl-aryl crosss-couplings that avoid the preparation of haloaromatics. Current Opinion in Drug Discovery & Development, 2008, 11, 853-69.	1.9	4
51	Silylcyclopropanes by Selective [1,4]-Wittig Rearrangement of 4-Silyl-5,6-dihydropyrans. Organic Letters, 2021, 23, 5724-5728.	2.4	3
52	Merging Iridium-Catalyzed C–H Borylations with Palladium-Catalyzed Cross-Couplings Using Triorganoindium Reagents. Journal of Organic Chemistry, 2022, 87, 751-759.	1.7	3
53	Amide directed iridium C(sp3)–H borylation catalysis with high N-methyl selectivity. Tetrahedron, 2022, 109, 132578.	1.0	2
54	Phase Behavior of Selected Condensed Double-Decker Shaped Silsesquioxane Compounds. Silicon, 2022, 14, 7555-7565.	1.8	1