Hasan Uludag

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2930569/publications.pdf

Version: 2024-02-01

219 papers

9,240 citations

53 h-index 82 g-index

221 all docs

221 docs citations

times ranked

221

10669 citing authors

#	Article	IF	CITATIONS
1	TRAIL Therapy for Breast Cancer Treatment by Employing Lipopolymer mRNA Delivery. , 2022, 1, 101-112.		3
2	Linoleicâ€acidâ€substituted polyethylenimine to silence heat shock protein 90B1 (HSP90B1) to inhibit migration of breast cancer cells. Journal of Gene Medicine, 2022, 24, e3419.	1.4	2
3	Mineralized vectors for gene therapy. Acta Biomaterialia, 2022, , .	4.1	2
4	siRNA Targeting Mcl-1 Potentiates the Anticancer Activity of Andrographolide Nanosuspensions via Apoptosis in Breast Cancer Cells. Pharmaceutics, 2022, 14, 1196.	2.0	4
5	In Vitro Cytotoxicity and Cytokine Production by Lipid-Substituted Low Molecular Weight Branched PEIs Used for Gene Delivery. Acta Biomaterialia, 2022, 148, 279-297.	4.1	7
6	Multiple gene knockdown strategies for investigating the properties of human leukemia stem cells and exploring new therapies. Methods in Cell Biology, 2022, , .	0.5	0
7	An overview of the use of biomaterials, nanotechnology, and stem cells for detection and treatment of COVID-19: towards a framework to address future global pandemics. Emergent Materials, 2021, 4, 19-34.	3.2	21
8	Suppression of Human Coronavirus 229E Infection in Lung Fibroblast Cells via RNA Interference. Frontiers in Nanotechnology, 2021, 3, .	2.4	4
9	COVID-19: insights into virus–receptor interactions. Molecular Biomedicine, 2021, 2, 10.	1.7	8
10	Investigation of waterâ€insoluble hydrophobic polyethylenimines as <scp>RNAi</scp> vehicles in chronic myeloid leukemia therapy. Journal of Biomedical Materials Research - Part A, 2021, 109, 2306-2321.	2.1	7
11	Therapeutic delivery of siRNA with polymeric carriers to down-regulate STAT5A expression in high-risk B-cell acute lymphoblastic leukemia (B-ALL). PLoS ONE, 2021, 16, e0251719.	1.1	5
12	How can molecular dynamics simulations assist with gene medicines?. Biomaterials and Biosystems, 2021, 2, 100014.	1.0	O
13	Delivery of Bioactive Gene Particles via Gelatin-Collagen-PEG-Based Electrospun Matrices. Pharmaceuticals, 2021, 14, 666.	1.7	13
14	Modeling Uptake of Polyethylenimine/Short Interfering RNA Nanoparticles in Breast Cancer Cells Using Machine Learning. Advanced NanoBiomed Research, 2021, 1, 2000106.	1.7	7
15	Polymeric siRNA delivery targeting integrin- \hat{l}^21 could reduce interactions of leukemic cells with bone marrow microenvironment. Biomaterials and Biosystems, 2021, 3, 100021.	1.0	3
16	Mineralized polyplexes for gene delivery: Improvement of transfection efficiency as a consequence of calcium incubation and not mineralization. Materials Science and Engineering C, 2021, 129, 112419.	3.8	3
17	The effect of low intensity pulsed ultrasound on mandibular condylar growth in young adult rats. Bone Reports, 2021, 15, 101122.	0.2	3
18	Nature of bilayer lipids affects membranes deformation and pore resealing during nanoparticle penetration. Materials Science and Engineering C, 2021, 132, 112530.	3.8	2

#	Article	IF	Citations
19	Mechanisms of Drug Resistance and Use of Nanoparticle Delivery to Overcome Resistance in Breast Cancers. Advances in Experimental Medicine and Biology, 2021, , 163-181.	0.8	4
20	Membrane lipids destabilize short interfering ribonucleic acid (siRNA)/polyethylenimine nanoparticles. Nanoscale, 2020, 12, 1032-1045.	2.8	10
21	Cholesterol grafted cationic lipopolymers: Potential siRNA carriers for selective chronic myeloid leukemia therapy. Journal of Biomedical Materials Research - Part A, 2020, 108, 565-580.	2.1	17
22	A systematic comparison of lipopolymers for siRNA delivery to multiple breast cancer cell lines: In vitro studies. Acta Biomaterialia, 2020, 102, 351-366.	4.1	17
23	TRAIL therapy and prospective developments for cancer treatment. Journal of Controlled Release, 2020, 326, 335-349.	4.8	39
24	Prospects for RNAi Therapy of COVID-19. Frontiers in Bioengineering and Biotechnology, 2020, 8, 916.	2.0	69
25	Editorial: Enabling Biomaterials for New Biomedical Technologies and Clinical Therapies. Frontiers in Bioengineering and Biotechnology, 2020, 8, 559.	2.0	6
26	Enabling Combinatorial siRNA Delivery against Apoptosis-Related Proteins with Linoleic Acid and α-Linoleic Acid Substituted Low Molecular Weight Polyethylenimines. Pharmaceutical Research, 2020, 37, 46.	1.7	7
27	Electrospun gelatin matrices with bioactive pDNA polyplexes. International Journal of Biological Macromolecules, 2020, 149, 296-308.	3.6	21
28	Nanofibers as new-generation materials: From spinning and nano-spinning fabrication techniques to emerging applications. Applied Materials Today, 2019, 17, 1-35.	2.3	296
29	siRNA-mediated BCR-ABL silencing in primary chronic myeloid leukemia cells using lipopolymers. Journal of Controlled Release, 2019, 310, 141-154.	4.8	15
30	At the Intersection of Biomaterials and Gene Therapy: Progress in Non-viral Delivery of Nucleic Acids. Frontiers in Bioengineering and Biotechnology, 2019, 7, 131.	2.0	43
31	Current outlook on drug resistance in chronic myeloid leukemia (CML) and potential therapeutic options. Drug Discovery Today, 2019, 24, 1355-1369.	3.2	27
32	siRNA Library Screening to Identify Complementary Therapeutic Pairs in Triple-Negative Breast Cancer Cells. Methods in Molecular Biology, 2019, 1974, 1-19.	0.4	6
33	Breathing New Life into TRAIL for Breast Cancer Therapy: Co-Delivery of pTRAIL and Complementary siRNAs Using Lipopolymers. Human Gene Therapy, 2019, 30, 1531-1546.	1.4	13
34	<i>BCR-Abl</i> Silencing by siRNA: A Potent Approach to Sensitize Chronic Myeloid Leukemia Cells to Tyrosine Kinase Inhibitor Therapy. Stem Cells and Development, 2019, 28, 734-744.	1.1	18
35	Development of PEI- <i>RANK</i> siRNA Complex Loaded PLGA Nanocapsules for the Treatment of Osteoporosis. Tissue Engineering - Part A, 2019, 25, 34-43.	1.6	24
36	A review of nanostructured surfaces and materials for dental implants: surface coating, patterning and functionalization for improved performance. Biomaterials Science, 2018, 6, 1312-1338.	2.6	149

3

#	Article	IF	CITATIONS
37	Novel targets for sensitizing breast cancer cells to TRAILâ€induced apoptosis with siRNA delivery. International Journal of Cancer, 2018, 142, 597-606.	2.3	26
38	Combinational siRNA delivery using hyaluronic acid modified amphiphilic polyplexes against cell cycle and phosphatase proteins to inhibit growth and migration of triple-negative breast cancer cells. Acta Biomaterialia, 2018, 66, 294-309.	4.1	31
39	Mechanistic insights into the role of glycosaminoglycans in delivery of polymeric nucleic acid nanoparticles by molecular dynamics simulations. Biomaterials, 2018, 156, 107-120.	5.7	9
40	Multiphasic Collagen Scaffolds for Engineered Tissue Interfaces. Advanced Functional Materials, 2018, 28, 1804730.	7.8	27
41	Regenerative Medicine: Multiphasic Collagen Scaffolds for Engineered Tissue Interfaces (Adv. Funct.) Tj ETQq1 1	0.784314	rgBT Overlo
42	Current state of fabrication technologies and materials for bone tissue engineering. Acta Biomaterialia, 2018, 80, 1-30.	4.1	387
43	Steered molecular dynamics simulations reveal a self-protecting configuration of nanoparticles during membrane penetration. Nanoscale, 2018, 10, 17671-17682.	2.8	14
44	Additive Polyplexes to Undertake siRNA Therapy against CDC20 and Survivin in Breast Cancer Cells. Biomacromolecules, 2018, 19, 4193-4206.	2.6	23
45	Reactive Oxygen Species Mediate Therapeutic Ultrasound-Induced, Mitogen-Activated Protein Kinase Activation in C28/I2 Chondrocytes. Ultrasound in Medicine and Biology, 2018, 44, 2105-2114.	0.7	4
46	Molecular Dynamics Simulations on Nucleic Acid Binding Polymers Designed To Arrest Thrombosis. ACS Applied Materials & Designed Materia	4.0	7
47	siRNA/lipopolymer nanoparticles to arrest growth of chronic myeloid leukemia cells in vitro and in vivo. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 130, 66-70.	2.0	21
48	Advances in biology of acute lymphoblastic leukemia (ALL) and therapeutic implications. American Journal of Blood Research, 2018, 8, 29-56.	0.6	21
49	Effect of Increasing Low-Intensity Pulsed Ultrasound and a Functional Appliance on the Mandibular Condyle in Growing Rats. Journal of Ultrasound in Medicine, 2017, 36, 109-120.	0.8	12
50	Polymeric Delivery of siRNA against Integrinâ $\hat{\mathbb{P}}^2$ 1 (CD29) to Reduce Attachment and Migration of Breast Cancer Cells. Macromolecular Bioscience, 2017, 17, 1600430.	2.1	13
51	Nucleic acid combinations: A new frontier for cancer treatment. Journal of Controlled Release, 2017, 256, 153-169.	4.8	22
52	Construction of a PLGA based, targeted siRNA delivery system for treatment of osteoporosis. Journal of Biomaterials Science, Polymer Edition, 2017, 28, 1859-1873.	1.9	17
53	Biomaterials for polynucleotide delivery to anchorage-independent cells. Journal of Materials Chemistry B, 2017, 5, 7238-7261.	2.9	18
54	Role of Reactive Oxygen Species during Low-Intensity Pulsed Ultrasound Application in MC-3 T3 E1 Pre-osteoblast Cell Culture. Ultrasound in Medicine and Biology, 2017, 43, 2699-2712.	0.7	10

#	Article	IF	CITATIONS
55	Hydrophobe-substituted bPEI derivatives: boosting transfection on primary vascular cells. Science China Materials, 2017, 60, 529-542.	3.5	6
56	Preface on "Biomaterial Foundations of Therapeutic Delivery― Science China Materials, 2017, 60, 469-470.	3.5	0
57	Biomaterials to Facilitate Delivery of RNA Agents in Bone Regeneration and Repair. ACS Biomaterials Science and Engineering, 2017, 3, 1195-1206.	2.6	16
58	Osteogenic Differentiation of Human Umbilical Cord Peri-vascular Cells using Low Intensity Pulsed Ultrasound. Journal of Stem Cell Research & Therapy, 2016, 06, .	0.3	0
59	Identification of Potential Drug Targets in Cancer Signaling Pathways using Stochastic Logical Models. Scientific Reports, 2016, 6, 23078.	1.6	24
60	Current attempts to implement siRNA-based RNAi in leukemia models. Drug Discovery Today, 2016, 21, 1412-1420.	3.2	12
61	Fibronectin-modified surfaces for evaluating the influence of cell adhesion on sensitivity of leukemic cells to siRNA nanoparticles. Nanomedicine, 2016, 11, 1123-1138.	1.7	15
62	Multiple siRNA delivery against cell cycle and anti-apoptosis proteins using lipid-substituted polyethylenimine in triple-negative breast cancer and nonmalignant cells. Journal of Biomedical Materials Research - Part A, 2016, 104, 3031-3044.	2.1	20
63	Polymeric micelles for <i>MCL-1</i> gene silencing in breast tumors following systemic administration. Nanomedicine, 2016, 11, 2319-2339.	1.7	16
64	Low Molecular Weight Branched PEI Binding to Linear DNA. Chemical and Pharmaceutical Bulletin, 2016, 64, 1484-1491.	0.6	14
65	Single and Combinational siRNA Therapy of Cancer Cells: Probing Changes in Targeted and Nontargeted Mediators after siRNA Treatment. Molecular Pharmaceutics, 2016, 13, 4116-4128.	2.3	17
66	Gene-Based Approaches to Bone Regeneration. , 2016, , 343-356.		2
67	Small hydrophobe substitution on polyethylenimine for plasmid DNA delivery: Optimal substitution is critical for effective delivery. Acta Biomaterialia, 2016, 33, 213-224.	4.1	28
68	Targeting CXCR4/SDF-1 axis by lipopolymer complexes of siRNA in acute myeloid leukemia. Journal of Controlled Release, 2016, 224, 8-21.	4.8	38
69	156. Cationic Lipopolymers for BCR-ABL siRNA Delivery and Growth Arrest in Chronic Myeloid Leukemia Tumors. Molecular Therapy, 2015, 23, S62-S63.	3.7	0
70	160. Additive Nanocomplexes of Cationic Lipopolymers for Improved Non-Viral Gene Delivery to Mesenchymal Stem Cells. Molecular Therapy, 2015, 23, S64-S65.	3.7	1
71	Targeting Cell Cycle Proteins in Breast Cancer Cells with siRNA by Using Lipid-Substituted Polyethylenimines. Frontiers in Bioengineering and Biotechnology, 2015, 3, 14.	2.0	21
72	Effect of ultrasound on human umbilical cord peri-vascular cells. Journal of Biomedical Engineering and Informatics, 2015, 1, 70.	0.2	0

#	Article	IF	CITATIONS
73	Probing the Effect of miRNA on siRNA–PEI Polyplexes. Journal of Physical Chemistry B, 2015, 119, 5475-5486.	1.2	19
74	Additive nanocomplexes of cationic lipopolymers for improved non-viral gene delivery to mesenchymal stem cells. Journal of Materials Chemistry B, 2015, 3, 3972-3982.	2.9	28
75	Progress in RNAi-mediated Molecular Therapy of Acute and Chronic Myeloid Leukemia. Molecular Therapy - Nucleic Acids, 2015, 4, e240.	2.3	31
76	A Delicate Balance When Substituting a Small Hydrophobe onto Low Molecular Weight Polyethylenimine to Improve Its Nucleic Acid Delivery Efficiency. ACS Applied Materials & Samp; Interfaces, 2015, 7, 24822-24832.	4.0	27
77	Effect of siRNA pre-Exposure on Subsequent Response to siRNA Therapy. Pharmaceutical Research, 2015, 32, 3813-3826.	1.7	14
78	Abstract A57: Effects of pre-exposure to siRNA on silencing response: Do cells become resistant to siRNA silencing?. , 2015, , .		0
79	Abstract B45: A search for ideal siRNA targets involved in pathway cross-talks for combinational silencing in human cancer cells. , 2015, , .		0
80	Abstract B15: In vivo analysis of repeated siRNA silencing on protein expression levels., 2015,,.		0
81	Effect of Nonviral Plasmid Delivered Basic Fibroblast Growth Factor and Low Intensity Pulsed Ultrasound on Mandibular Condylar Growth: A Preliminary Study. BioMed Research International, 2014, 2014, 1-9.	0.9	15
82	Grand Challenges in Biomaterials. Frontiers in Bioengineering and Biotechnology, 2014, 2, 43.	2.0	9
83	A Molecular Dynamics Simulation Study on the Effect of Endogenous Molecules on SiRNA Polyplexes. Biophysical Journal, 2014, 106, 804a.	0.2	0
84	Effective downâ€regulation of signal transducer and activator of transcription 3 (STAT3) by polyplexes of siRNA and lipidâ€substituted polyethyleneimine for sensitization of breast tumor cells to conventional chemotherapy. Journal of Biomedical Materials Research - Part A, 2014, 102, 3216-3228.	2.1	22
85	Pharmacokinetics and transgene expression of implanted polyethylenimine-based pDNA complexes. Biomaterials Science, 2014, 2, 833-842.	2.6	7
86	Polymeric nanoparticle-mediated silencing of CD44 receptor in CD34+ acute myeloid leukemia cells. Leukemia Research, 2014, 38, 1299-1308.	0.4	40
87	siRNA therapy in cutaneous T-cell lymphoma cells using polymeric carriers. Biomaterials, 2014, 35, 9382-9394.	5.7	13
88	Molecular modeling of polynucleotide complexes. Biomaterials, 2014, 35, 7068-7076.	5.7	36
89	Molecular Dynamics Simulations of Polyplexes and Lipoplexes Employed in Gene Delivery. Fundamental Biomedical Technologies, 2014, , 277-311.	0.2	1
90	Potential of siRNA Therapy in Chronic Myeloid Leukemia. Fundamental Biomedical Technologies, 2014, , 435-473.	0.2	1

#	Article	IF	Citations
91	Effect of basic fibroblast growth factor in mouse embryonic stem cell culture and osteogenic differentiation. Journal of Tissue Engineering and Regenerative Medicine, 2013, 7, 371-382.	1.3	14
92	Recent attempts at RNAiâ€mediated Pâ€glycoprotein downregulation for reversal of multidrug resistance in cancer. Medicinal Research Reviews, 2013, 33, 33-53.	5.0	58
93	Modification of human BMSC with nanoparticles of polymeric biomaterials and plasmid DNA for BMP-2 secretion. Journal of Surgical Research, 2013, 183, 8-17.	0.8	11
94	Cholic acid modified 2 kDa polyethylenimine as efficient transfection agent. Biotechnology Progress, 2013, 29, 1337-1341.	1.3	8
95	Investigating siRNA delivery to chronic myeloid leukemia K562 cells with lipophilic polymers for therapeutic BCR-ABL down-regulation. Journal of Controlled Release, 2013, 172, 495-503.	4.8	48
96	Matrix forming characteristics of inner and outer human meniscus cells on 3D collagen scaffolds under normal and low oxygen tensions. BMC Musculoskeletal Disorders, 2013, 14, 353.	0.8	27
97	Effective response of doxorubicin-sensitive and -resistant breast cancer cells to combinational siRNA therapy. Journal of Controlled Release, 2013, 172, 219-228.	4.8	56
98	A molecular dynamics simulation study on the effect of lipid substitution on polyethylenimine mediated siRNA complexation. Biomaterials, 2013, 34, 2822-2833.	5.7	41
99	Gelatin coating to stabilize the transfection ability of nucleic acid polyplexes. Acta Biomaterialia, 2013, 9, 7429-7438.	4.1	9
100	Polymeric delivery of siRNA for dual silencing of Mcl-1 and P-glycoprotein and apoptosis induction in drug-resistant breast cancer cells. Cancer Gene Therapy, 2013, 20, 169-177.	2.2	40
101	Realizing the potential of gene-based molecular therapies in bone repair. Journal of Bone and Mineral Research, 2013, 28, 2245-2262.	3.1	16
102	Effective down-regulation of signal transducer and activator of transcription 3 (STAT3) by polyplexes of siRNA and lipid-substituted polyethyleneimine for sensitization of breast tumor cells to conventional chemotherapy. Journal of Biomedical Materials Research - Part A, 2013, 102, n/a-n/a.	2.1	13
103	Abstract 997: Potential targets for siRNA-mediated combinational therapy of breast cancer cells , 2013, , .		0
104	BSA Nanoparticles for siRNA Delivery: Coating Effects on Nanoparticle Properties, Plasma Protein Adsorption, and <i>In Vitro </i> SiRNA Delivery. International Journal of Biomaterials, 2012, 2012, 1-10.	1.1	22
105	Noggin suppression decreases BMPâ€2â€induced osteogenesis of human bone marrowâ€derived mesenchymal stem cells <i>In Vitro</i> . Journal of Cellular Biochemistry, 2012, 113, 3672-3680.	1.2	61
106	Probing the Role of Lipid Substitution on Polyethylenimine Mediated DNA Aggregation: An All-Atom Molecular Dynamics Study. Biophysical Journal, 2012, 102, 396a.	0.2	0
107	A simple and rapid nonviral approach to efficiently transfect primary tissue–derived cells using polyethylenimine. Nature Protocols, 2012, 7, 935-945.	5.5	97
108	Nucleic-acid based gene therapeutics: delivery challenges and modular design of nonviral gene carriers and expression cassettes to overcome intracellular barriers for sustained targeted expression. Journal of Drug Targeting, 2012, 20, 301-328.	2.1	42

#	Article	IF	CITATIONS
109	Effective down-regulation of Breast Cancer Resistance Protein (BCRP) by siRNA delivery using lipid-substituted aliphatic polymers. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 81, 33-42.	2.0	33
110	Cellular uptake pathways of lipid-modified cationic polymers in gene delivery to primary cells. Biomaterials, 2012, 33, 7834-7848.	5.7	65
111	Probing the Effects of Lipid Substitution on Polycation Mediated DNA Aggregation: A Molecular Dynamics Simulations Study. Biomacromolecules, 2012, 13, 2982-2988.	2.6	17
112	Molecular Dynamics Simulations for Complexation of DNA with 2 kDa PEI Reveal Profound Effect of PEI Architecture on Complexation. Journal of Physical Chemistry B, 2012, 116, 2405-2413.	1.2	41
113	Osteogenic Differentiation of Human Mesenchymal Stem Cells Cultured with Dexamethasone, Vitamin D3, Basic Fibroblast Growth Factor, and Bone Morphogenetic Protein-2. Connective Tissue Research, 2012, 53, 117-131.	1.1	52
114	Specific effects of PEGylation on gene delivery efficacy of polyethylenimine: Interplay between PEG substitution and N/P ratio. Acta Biomaterialia, 2012, 8, 3941-3955.	4.1	63
115	Effective Non-Viral Delivery of siRNA to Acute Myeloid Leukemia Cells with Lipid-Substituted Polyethylenimines. PLoS ONE, 2012, 7, e44197.	1.1	42
116	Macrophages Inhibit Migration, Metabolic Activity and Osteogenic Differentiation of Human Mesenchymal Stem Cells in vitro. Cells Tissues Organs, 2012, 195, 473-483.	1.3	17
117	Supramolecular assemblies in functional siRNA delivery: Where do we stand?. Biomaterials, 2012, 33, 2546-2569.	5.7	121
118	Protein expression following non-viral delivery of plasmid DNA coding for basic FGF and BMP-2 in a rat ectopic model. Biomaterials, 2012, 33, 3363-3374.	5.7	33
119	Bisphosphonateâ€decorated lipid nanoparticles designed as drug carriers for bone diseases. Journal of Biomedical Materials Research - Part A, 2012, 100A, 684-693.	2.1	61
120	Abstract A65: Combinational siRNA silencing of MCL-1 and P-gp enhances the apoptotic response in Human Breast Cancer Cells. Clinical Cancer Research, 2012, 18, A65-A65.	3.2	0
121	Abstract B32: Impact of Lipid-Substitution on Assembly and Delivery of siRNA by Cationic Polymers. Clinical Cancer Research, 2012, 18, B32-B32.	3.2	0
122	A Comparative Evaluation of Disulfide-Linked and Hydrophobically-Modified PEI for Plasmid Delivery. Journal of Biomaterials Science, Polymer Edition, 2011, 22, 873-892.	1.9	24
123	Orthodontic Tooth Movement in Alveolar Cleft Repaired with a Tissue Engineering Bone: An Experimental Study in Dogs. Tissue Engineering - Part A, 2011, 17, 1313-1325.	1.6	50
124	STAT3 Knockdown in B16 Melanoma by siRNA Lipopolyplexes Induces Bystander Immune Response In Vitro and In Vivo. Translational Oncology, 2011, 4, 178-188.	1.7	37
125	Molecular Dynamics Simulations of PEI Mediated DNA Aggregation. Biomacromolecules, 2011, 12, 3698-3707.	2.6	38
126	Induction of Apoptosis by Survivin Silencing through siRNA Delivery in a Human Breast Cancer Cell Line. Molecular Pharmaceutics, 2011, 8, 1821-1830.	2.3	61

#	Article	IF	CITATIONS
127	Bisphosphonate-Derivatized Liposomes to Control Drug Release from Collagen/Hydroxyapatite Scaffolds. Molecular Pharmaceutics, 2011, 8, 1025-1034.	2.3	59
128	Molecular Dynamics Simulations of DNA/PEI Complexes: Effect of PEI Branching and Protonation State. Biophysical Journal, 2011, 100, 2754-2763.	0.2	127
129	siRNA-Mediated Down-Regulation of P-glycoprotein in a Xenograft Tumor Model in NOD-SCID Mice. Pharmaceutical Research, 2011, 28, 2516-2529.	1.7	21
130	Impact of Lipid Substitution on Assembly and Delivery of siRNA by Cationic Polymers. Macromolecular Bioscience, 2011, 11, 662-672.	2.1	77
131	Improved transfection efficiency of an aliphatic lipid substituted 2 kDa polyethylenimine is attributed to enhanced nuclear association and uptake in rat bone marrow stromal cell. Journal of Gene Medicine, 2011, 13, 46-59.	1.4	36
132	Lipid substitution on low molecular weight (0.6–2.0 kDa) polyethylenimine leads to a higher zeta potential of plasmid DNA and enhances transgene expression. Acta Biomaterialia, 2011, 7, 2209-2217.	4.1	51
133	Gene Therapy in Bone Regeneration: A Summary of Delivery Approaches for Effective Therapies. Fundamental Biomedical Technologies, 2011, , 813-846.	0.2	1
134	In Vitro Osteogenic Induction Of Human Gingival Fibroblasts For Bone Regeneration. Open Dentistry Journal, 2011, 5, 139-145.	0.2	32
135	Bone Morphogenetic Protein Binding Peptide Mechanism and Enhancement of Osteogenic Protein-1 Induced Bone Healing. Spine, 2010, 35, 2049-2056.	1.0	28
136	Synthesis, characterization and in vitro evaluation of a bone targeting delivery system for salmon Calcitonin. International Journal of Pharmaceutics, 2010, 394, 26-34.	2.6	22
137	Poly-l-lysine-coated albumin nanoparticles: Stability, mechanism for increasing in vitro enzymatic resilience, and siRNA release characteristics. Acta Biomaterialia, 2010, 6, 4277-4284.	4.1	62
138	The induction of tumor apoptosis in B16 melanoma following STAT3 siRNA delivery with a lipid-substituted polyethylenimine. Biomaterials, 2010, 31, 1420-1428.	5.7	110
139	Cationic polymerâ€mediated small interfering RNA delivery for Pâ€glycoprotein downâ€regulation in tumor cells. Cancer, 2010, 116, 5544-5554.	2.0	35
140	Polyethylenimine–PEG coated albumin nanoparticles for BMP-2 delivery. Biomaterials, 2010, 31, 952-963.	5.7	90
141	Virus-mimetic polymeric micelles for targeted siRNA delivery. Biomaterials, 2010, 31, 5886-5893.	5.7	87
142	Thermodynamics of Polyethylenimine-DNA Binding and DNA Condensation. Biophysical Journal, 2010, 99, 201-207.	0.2	74
143	STAT3 Silencing in Dendritic Cells by siRNA Polyplexes Encapsulated in PLGA Nanoparticles for the Modulation of Anticancer Immune Response. Molecular Pharmaceutics, 2010, 7, 1643-1654.	2.3	86
144	Systematic evaluation of a tissue-engineered bone for maxillary sinus augmentation in large animal canine model. Bone, 2010, 46, 91-100.	1.4	45

#	Article	IF	Citations
145	Bisphosphonate-coated BSA nanoparticles lack bone targeting after systemic administration. Journal of Drug Targeting, 2010, 18, 611-626.	2.1	28
146	Lipid and hydrophobic modification of cationic carriers on route to superior gene vectors. Soft Matter, 2010, 6, 2124.	1.2	82
147	Anabolic effects of low-intensity pulsed ultrasound on human gingival fibroblasts. Archives of Oral Biology, 2009, 54, 743-748.	0.8	48
148	Nanoparticulate Systems for Growth Factor Delivery. Pharmaceutical Research, 2009, 26, 1561-1580.	1.7	157
149	Nonviral Delivery of Basic Fibroblast Growth Factor Gene to Bone Marrow Stromal Cells. Clinical Orthopaedics and Related Research, 2009, 467, 3129-3137.	0.7	8
150	Biodegradable amphiphilic poly(ethylene oxide)-block-polyesters with grafted polyamines as supramolecular nanocarriers for efficient siRNA delivery. Biomaterials, 2009, 30, 242-253.	5.7	156
151	Pharmacokinetics and bone formation by BMP-2 entrapped in polyethylenimine-coated albumin nanoparticles. Biomaterials, 2009, 30, 5143-5155.	5.7	51
152	Aliphatic Lipid Substitution on 2 kDa Polyethylenimine Improves Plasmid Delivery and Transgene Expression. Molecular Pharmaceutics, 2009, 6, 1798-1815.	2.3	124
153	Relationship between the Extent of Lipid Substitution on Poly(I-lysine) and the DNA Delivery Efficiency. ACS Applied Materials & Delivery Efficiency.	4.0	36
154	Improved Bone Delivery of Osteoprotegerin by Bisphosphonate Conjugation in a Rat Model of Osteoarthritis. Molecular Pharmaceutics, 2009, 6, 634-640.	2.3	48
155	Formulation and Delivery of siRNA by Oleic Acid and Stearic Acid Modified Polyethylenimine. Molecular Pharmaceutics, 2009, 6, 121-133.	2.3	132
156	Mouse Pancreatic Islets Are Resistant to Indoleamine 2,3 Dioxygenase-Induced General Control Nonderepressible-2 Kinase Stress Pathway and Maintain Normal Viability and Function. American Journal of Pathology, 2009, 174, 196-205.	1.9	29
157	Multifunctional Polymeric Micelles for Enhanced Intracellular Delivery of Doxorubicin to Metastatic Cancer Cells. Pharmaceutical Research, 2008, 25, 2555-2566.	1.7	106
158	Preparation of BMP-2 Containing Bovine Serum Albumin (BSA) Nanoparticles Stabilized by Polymer Coating. Pharmaceutical Research, 2008, 25, 2896-2909.	1.7	90
159	Effects of size and topology of DNA molecules on intracellular delivery with non-viral gene carriers. BMC Biotechnology, 2008, 8, 23.	1.7	57
160	Polyethylenimineâ€coated albumin nanoparticles for BMPâ€2 delivery. Biotechnology Progress, 2008, 24, 945-956.	1.3	83
161	Special issue on Canadian bioengineering research. Biotechnology Progress, 2008, 24, 793-794.	1.3	0
162	Recent developments in nanoparticle-based drug delivery and targeting systems with emphasis on protein-based nanoparticles. Expert Opinion on Drug Delivery, 2008, 5, 499-515.	2.4	98

#	Article	IF	CITATIONS
163	Further Investigation of Lipid-Substituted Poly(I-Lysine) Polymers for Transfection of Human Skin Fibroblasts. Biomacromolecules, 2008, 9, 1618-1630.	2.6	42
164	System-on-chip ultrasonic transducer for dental tissue formation and stem cell growth and differentiation. , 2008, , .		1
165	Osteogenic Response of Bone Marrow Stromal Cells from Normal and Ovariectomized Rats Treated with a Low Dose of Basic Fibroblast Growth Factor. Tissue Engineering, 2007, 13, 809-817.	4.9	36
166	A comparison of the effectiveness of cationic polymers poly-l-lysine (PLL) and polyethylenimine (PEI) for non-viral delivery of plasmid DNA to bone marrow stromal cells (BMSC). European Journal of Pharmaceutics and Biopharmaceutics, 2007, 65, 388-397.	2.0	97
167	â€~Magic bullets' for bone diseases: progress in rational design of bone-seeking medicinal agents. Chemical Society Reviews, 2007, 36, 507-531.	18.7	214
168	Palmitic Acid-Modified Poly-l-Lysine for Non-Viral Delivery of Plasmid DNA to Skin Fibroblasts. Biomacromolecules, 2007, 8, 1059-1063.	2.6	33
169	Conjugation of Arginine-Glycine-Aspartic Acid Peptides to Poly(ethylene oxide)-b-poly(ε-caprolactone) Micelles for Enhanced Intracellular Drug Delivery to Metastatic Tumor Cells. Biomacromolecules, 2007, 8, 874-884.	2.6	107
170	Palmitic acid substitution on cationic polymers for effective delivery of plasmid DNA to bone marrow stromal cells. Journal of Biomedical Materials Research - Part A, 2007, 81A, 493-504.	2.1	60
171	The Interaction of Cationic Polymers and Their Bisphosphonate Derivatives with Hydroxyapatite. Macromolecular Bioscience, 2007, 7, 656-670.	2.1	27
172	A comparative evaluation of poly-l-lysine-palmitic acid and Lipofectamine â,,¢ 2000 for plasmid delivery to bone marrow stromal cells. Biomaterials, 2007, 28, 4693-4704.	5.7	93
173	RGD Conjugation to Polyethyleneimine Does Not Improve DNA Delivery to Bone Marrow Stromal Cells. Biomacromolecules, 2006, 7, 1481-1488.	2.6	36
174	In Vitro Osteogenic Response of Rat Bone Marrow Cells to bFGF and BMP-2 Treatments. Clinical Orthopaedics and Related Research, 2006, 443, 113-123.	0.7	55
175	A comparison of mineral affinity of bisphosphonate–protein conjugates constructed with disulfide and thioether linkages. Biomaterials, 2006, 27, 769-784.	5.7	43
176	RGD-grafted thermoreversible polymers to facilitate attachment of BMP-2 responsive C2C12 cells. Biomaterials, 2005, 26, 7329-7338.	5.7	55
177	Designing proteins for bone targeting. Advanced Drug Delivery Reviews, 2005, 57, 1011-1036.	6.6	61
178	Imparting mineral affinity to proteins with thiol-labile disulfide linkages. Journal of Biomedical Materials Research - Part A, 2005, 74A, 618-628.	2.1	22
179	A Dendritic Tetra(bisphosphonic acid) for Improved Targeting of Proteins to Bone. Angewandte Chemie - International Edition, 2005, 44, 3710-3714.	7.2	43
180	Bone Marrow Cells from Normal and Ovariectomized Rats Respond Differently to Basic Fibroblast Growth Factor and Bone Morphogenetic Protein 2 Treatment in Vitro. Tissue Engineering, 2005, 11, 634-644.	4.9	12

#	Article	IF	CITATIONS
181	Imparting Mineral Affinity to Fetuin by Bisphosphonate Conjugation:  A Comparison of Three Bisphosphonate Conjugation Schemes. Molecular Pharmaceutics, 2005, 2, 392-406.	2.3	17
182	Cleavage of Disulfide-Linked Fetuinâ°'Bisphosphonate Conjugates with Three Physiological Thiols. Biomacromolecules, 2005, 6, 2800-2808.	2.6	15
183	Growth factor delivery for bone tissue repair: an update. Expert Opinion on Drug Delivery, 2004, 1, 19-36.	2.4	70
184	Imparting bone mineral affinity to osteogenic proteins through heparin–bisphosphonate conjugates. Journal of Controlled Release, 2004, 98, 255-268.	4.8	26
185	Impact of Tether Length on Bone Mineral Affinity of Protein-Bisphosphonate Conjugates. Pharmaceutical Research, 2004, 21, 608-616.	1.7	20
186	Poly(ethyleneimine)/arginine-glycine-aspartic acid conjugates prepared withN-succinimidyl 3-(2-pyridyldithio)propionate: An investigation of peptide coupling and conjugate stability. Journal of Polymer Science Part A, 2004, 42, 6143-6156.	2.5	11
187	Temperature-sensitive polymer-conjugated IFN-? induces the expression of IDO mRNA and activity by fibroblasts populated in collagen gel (FPCG). Journal of Cellular Physiology, 2004, 201, 146-154.	2.0	16
188	A di(bisphosphonic acid) for protein coupling and targeting to bone. Journal of Pharmaceutical Sciences, 2004, 93, 2788-2799.	1.6	19
189	Simulating Hydroxyapatite Binding of Bone-Seeking Bisphosphonates. Advances in Experimental Medicine and Biology, 2004, 553, 139-148.	0.8	6
190	In-Situ Crosslinking Thermoreversible Polymers for Cell Entrapment. Advances in Experimental Medicine and Biology, 2004, 553, 19-28.	0.8	1
191	Imparting bone affinity to glycoproteins through the conjugation of bisphosphonates. Pharmaceutical Research, 2003, 20, 978-987.	1.7	23
192	Immune cell proliferation is suppressed by the interferon-?-induced indoleamine 2,3-dioxygenase expression of fibroblasts populated in collagen gel (FPCG). Journal of Cellular Biochemistry, 2003, 90, 206-217.	1.2	35
193	Proliferation of peripheral blood mononuclear cells is suppressed by the indoleamine 2,3-dioxygenase expression of interferon- \hat{l}^3 -treated skin cells in a co-culture system. Wound Repair and Regeneration, 2003, 11, 337-345.	1.5	31
194	Conjugation of arginine-glycine-aspartic acid peptides to thermoreversibleN-isopropylacrylamide polymers. Journal of Polymer Science Part A, 2003, 41, 3989-4000.	2.5	26
195	Synthetic Thermoreversible Polymers Are Compatible with Osteoinductive Activity of Recombinant Human Bone Morphogenetic Protein 2. Tissue Engineering, 2002, 8, 429-440.	4.9	24
196	Bisphosphonates as a Foundation of Drug Delivery to Bone. Current Pharmaceutical Design, 2002, 8, 1929-1944.	0.9	113
197	Targeting Systemically Administered Proteins to Bone by Bisphosphonate Conjugation. Biotechnology Progress, 2002, 18, 604-611.	1.3	58
198	Growth Factor Delivery for Bone Tissue Engineering. Journal of Drug Targeting, 2001, 9, 407-429.	2.1	93

#	Article	IF	CITATIONS
199	Effect of molecular weight of thermoreversible polymer onin vivo retention of rhBMP-2. Journal of Biomedical Materials Research Part B, 2001, 57, 92-100.	3.0	25
200	Engineering temperature-sensitive poly(N-isopropylacrylamide) polymers as carriers of therapeutic proteins. Biotechnology and Bioengineering, 2001, 73, 510-521.	1.7	65
201	Delivery Systems for BMPs: Factors Contributing to Protein Retention at an Application Site. Journal of Bone and Joint Surgery - Series A, 2001, 83, S1-128-S1-135.	1.4	85
202	Reactivity of temperature-sensitive, protein-conjugating polymers prepared by a photopolymerization process. Journal of Applied Polymer Science, 2000, 75, 583-592.	1.3	15
203	Implantation of recombinant human bone morphogenetic proteins with biomaterial carriers: A correlation between protein pharmacokinetics and osteoinduction in the rat ectopic model., 2000, 50, 227-238.		174
204	Bone Affinity of a Bisphosphonate-Conjugated Protein in Vivo. Biotechnology Progress, 2000, 16, 1115-1118.	1.3	36
205	Bisphosphonate Conjugation to Proteins as a Means To Impart Bone Affinity. Biotechnology Progress, 2000, 16, 258-267.	1.3	59
206	Technology of mammalian cell encapsulation. Advanced Drug Delivery Reviews, 2000, 42, 29-64.	6.6	565
207	Synthesis and Characterization of Thermoreversible, Protein-Conjugating Polymers Based on N-Isopropylacrylamide. ACS Symposium Series, 2000, , 253-262.	0.5	6
208	rhBMPâ€Collagen Sponges as Osteoinductive Devices: Effects of in Vitro Sponge Characteristics and Protein pI on in Vivo rhBMP Pharmacokinetics. Annals of the New York Academy of Sciences, 1999, 875, 369-378.	1.8	73
209	Establishing an Immortalized Human Osteoprecursor Cell Line: OPC1. Journal of Bone and Mineral Research, 1999, 14, 1721-1733.	3.1	67
210	Characterization of rhBMP-2 pharmacokinetics implanted with biomaterial carriers in the rat ectopic model., 1999, 46, 193-202.		238
211	Bone Regeneration with Recombinant Human Bone Morphogenetic Protein-2 (rhBMP-2) Using Absorbable Collagen Sponges (ACS): Influence of Processing on ACS Characteristics and Formulation. Pharmaceutical Development and Technology, 1999, 4, 387-396.	1.1	44
212	Carrier Systems for Bone Morphogenetic Proteins. Clinical Orthopaedics and Related Research, 1999, 367, S95-S106.	0.7	166
213	Microencapsulated human hepatoma (HepG2) cells: capsule-to-capsule variations in protein secretion and permeability. Journal of Controlled Release, 1995, 33, 273-283.	4.8	14
214	Viability and protein secretion from human Hepatoma (HepG2) cells encapsulated in 400-?m polyacrylate microcapsules by submerged nozzle-liquid jet extrusion. Biotechnology and Bioengineering, 1994, 44, 1199-1204.	1.7	43
215	Microencapsulated human hepatoma (HepG2) cells:In vitro growth and protein release. Journal of Biomedical Materials Research Part B, 1993, 27, 1213-1224.	3.0	74
216	Metabolic Activity and Proliferation of Cho Cells in Hydroxyethyl Methacrylate-Methyl Methacrylate (Hema-Mma) Microcapsules. Cell Transplantation, 1993, 2, 175-182.	1.2	29

HASAN ULUDAG

#	ARTICLE	IF	CITATIONS
217	Metabolic activity of CHO fibroblasts in HEMA-MMA microcapsules. Biotechnology and Bioengineering, 1992, 39, 672-678.	1.7	30
218	Colorimetric assay fop cellular activity in microcapsules. Biomaterials, 1990, 11, 708-712.	5.7	59
219	A Polyplex in a Shell: The Effect of Poly(aspartic acid)-Mediated Calcium Carbonate Mineralization on Polyplexes Properties and Transfection Efficiency. Molecular Pharmaceutics, 0, , .	2.3	O