

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2930530/publications.pdf Version: 2024-02-01

Ů1 έ»

#	Article	IF	Citations
1	The draft genome of the grass carp (Ctenopharyngodon idellus) provides insights into its evolution and vegetarian adaptation. Nature Genetics, 2015, 47, 625-631.	21.4	352
2	RNA-seq profiles from grass carp tissues after reovirus (GCRV) infection based on singular and modular enrichment analyses. Molecular Immunology, 2014, 61, 44-53.	2.2	65
3	Deep Circular RNA Sequencing Provides Insights into the Mechanism Underlying Grass Carp Reovirus Infection. International Journal of Molecular Sciences, 2017, 18, 1977.	4.1	63
4	Differences in responses of grass carp to different types of grass carp reovirus (GCRV) and the mechanism of hemorrhage revealed by transcriptome sequencing. BMC Genomics, 2017, 18, 452.	2.8	58
5	Isolation and analysis of a novel grass carp toll-like receptor 4 (tlr4) gene cluster involved in the response to grass carp reovirus. Developmental and Comparative Immunology, 2012, 38, 383-388.	2.3	45
6	An NGS-based approach for the identification of sex-specific markers in snakehead (<i>Channa) Tj ETQq0 0 0 rgBT</i>	/Oyerlock	10 Tf 50 54 42
7	Transcriptomics Sequencing Provides Insights into Understanding the Mechanism of Grass Carp Reovirus Infection. International Journal of Molecular Sciences, 2018, 19, 488.	4.1	36
8	Structure, organization and expression of common carp (Cyprinus carpio L.) NKEF-B gene. Fish and Shellfish Immunology, 2009, 26, 220-229.	3.6	33
9	Identification, characterization and the interaction of Tollip and IRAK-1 in grass carp (Ctenopharyngodon idellus). Fish and Shellfish Immunology, 2012, 33, 459-467.	3.6	33
10	Molecular cloning and functional characterisation of NLRX1 in grass carp (Ctenopharyngodon) Tj ETQq0 0 0 rgBT	/Qverlock	10 Tf 50 382 23
11	Autophagy Inhibits Grass Carp Reovirus (GCRV) Replication and Protects Ctenopharyngodon idella Kidney (CIK) Cells from Excessive Inflammatory Responses after GCRV Infection. Biomolecules, 2020, 10, 1296.	4.0	23
12	Deep Illumina sequencing reveals conserved and novel microRNAs in grass carp in response to grass carp reovirus infection. BMC Genomics, 2017, 18, 195.	2.8	18
13	Identification and characterization of common carp (Cyprinus carpio L.) granzyme A/K, a cytotoxic cell granule-associated serine protease. Fish and Shellfish Immunology, 2010, 29, 388-398.	3.6	17
14	Identification, characterisation and preliminary functional analysis of IRAK-M in grass carp (Ctenopharyngodon idella). Fish and Shellfish Immunology, 2019, 84, 312-321.	3.6	17
15	Genetic variations of body weight and GCRV resistance in a random mating population of grass carp. Oncotarget, 2015, 6, 35433-35442.	1.8	17
16	Characterisation of scavenger receptor class B type 1 in rare minnow (Gobiocypris rarus). Fish and Shellfish Immunology, 2019, 89, 614-622.	3.6	16
17	A rapid method of sex-specific marker discovery based on NGS and determination of the XX / XY sex-determination system in Channa maculata. Aquaculture, 2020, 528, 735499.	3.5	15

18Molecular cloning, expression analysis and localization pattern of the MST family in grass carp
(Ctenopharyngodon idella). Fish and Shellfish Immunology, 2018, 76, 316-323.3.614

Ů1 É»"

#	Article	IF	CITATIONS
19	Grass carp ATG5 and ATG12 promote autophagy but down-regulate the transcriptional expression levels of IFN-I signaling pathway. Fish and Shellfish Immunology, 2019, 92, 600-611.	3.6	14
20	Full-Length Transcriptome Sequencing and the Discovery of New Transcripts in the Unfertilized Eggs of Zebrafish (<i>Danio rerio</i>). G3: Genes, Genomes, Genetics, 2019, 9, 1831-1838.	1.8	14
21	Characterisation and function of TRIM23 in grass carp (Ctenopharyngodon idella). Fish and Shellfish Immunology, 2019, 88, 627-635.	3.6	14
22	Multi-Omics Sequencing Provides Insights Into Age-Dependent Susceptibility of Grass Carp (Ctenopharyngodon idellus) to Reovirus. Frontiers in Immunology, 2021, 12, 694965.	4.8	14
23	Molecular cloning of the MARCH family in grass carp (Ctenopharyngodon idellus) and their response to grass carp reovirus challenge. Fish and Shellfish Immunology, 2017, 63, 480-490.	3.6	12
24	Computational identification of Y-linked markers and genes in the grass carp genome by using a pool-and-sequence method. Scientific Reports, 2017, 7, 8213.	3.3	12
25	ITGB1b-Deficient Rare Minnows Delay Grass Carp Reovirus (GCRV) Entry and Attenuate GCRV-Triggered Apoptosis. International Journal of Molecular Sciences, 2018, 19, 3175.	4.1	12
26	Molecular cloning and preliminary functional analysis of six RING-between-ring (RBR) genes in grass carp (Ctenopharyngodon idellus). Fish and Shellfish Immunology, 2019, 87, 62-72.	3.6	12
27	<i>Bid</i> -deficient fish delay grass carp reovirus (GCRV) replication and attenuate GCRV-triggered apoptosis. Oncotarget, 2017, 8, 76408-76422.	1.8	12
28	Characterization of two thymosins as immune-related genes in common carp (Cyprinus carpio L.). Developmental and Comparative Immunology, 2015, 50, 29-37.	2.3	11
29	Molecular characterization, tissue distribution and functional analysis of galectin 1-like 2 in grass carp (Ctenopharyngodon idella). Fish and Shellfish Immunology, 2019, 94, 455-463.	3.6	11
30	Different responses in one-year-old and three-year-old grass carp reveal the mechanism of age restriction of GCRV infection. Fish and Shellfish Immunology, 2019, 86, 702-712.	3.6	10
31	Cloning of six serpin genes and their responses to GCRV infection in grass carp (Ctenopharyngodon) Tj ETQq1 1	0.784314 3.6	rgBT /Overla
32	Selection of growth-related genes and dominant genotypes in transgenic Yellow River carp Cyprinus carpio L. Functional and Integrative Genomics, 2018, 18, 425-437.	3.5	9
33	Global and Complement Gene-Specific DNA Methylation in Grass Carp after Grass Carp Reovirus (GCRV) Infection. International Journal of Molecular Sciences, 2018, 19, 1110.	4.1	9
34	Molecular characterization and functional activity of Prx1 in grass carp (Ctenopharyngodon idella). Fish and Shellfish Immunology, 2019, 90, 395-403.	3.6	9
35	Investigating the Role of BATF3 in Grass Carp (Ctenopharyngodon idella) Immune Modulation: A Fundamental Functional Analysis. International Journal of Molecular Sciences, 2019, 20, 1687.	4.1	8
36	Cloning and characterization of the LEF/TCF gene family in grass carp (Ctenopharyngodon idella) and their expression profiles in response to grass carp reovirus infection. Fish and Shellfish Immunology, 2019, 86, 335-346.	3.6	8

Ů1 É»"

#	Article	IF	CITATIONS
37	Characterization and expression of galectin-3 in grass carp (Ctenopharyngodon idella). Developmental and Comparative Immunology, 2020, 104, 103567.	2.3	7
38	Genome-wide identification, evolution of Krüppel-like factors (klfs) and their expressions during GCRV challenge in grass carp (Ctenopharyngodon idella). Developmental and Comparative Immunology, 2021, 120, 104062.	2.3	6
39	Cloning and characterization of Bax1 and Bax2 genes of Ctenopharyngodon idellus and evaluation of transcript expression in response to grass carp reovirus infection. Fish Physiology and Biochemistry, 2016, 42, 1369-1382.	2.3	5
40	Deep sequencing of small RNAs from 11 tissues of grass carp <scp><i>Ctenopharyngodon idella</i></scp> and discovery of sexâ€related microRNAs. Journal of Fish Biology, 2019, 94, 132-141.	1.6	5
41	Chromosome-level genome assemblies of <i>Channa argus</i> and <i>Channa maculata</i> and comparative analysis of their temperature adaptability. GigaScience, 2021, 10, .	6.4	5
42	Molecular characterization and functional analysis of peroxiredoxin 4 in grass carp (Ctenopharyngodon idella). Developmental and Comparative Immunology, 2021, 125, 104213.	2.3	4
43	Identification, expression and functional characterisation of CYP1A in grass carp (Ctenopharyngodon) Tj ETQq1	1 0,784314 3.6	4 rgBT /Overl
44	Identification and molecular characterization of peroxiredoxin 2 in grass carp (Ctenopharyngodon) Tj ETQq0 0 0	rgBT/Ovei	rlogk 10 Tf 50
45	Expression and localization of grass carp pkc-Î, (protein kinase C theta) gene after its activation. Fish and Shellfish Immunology, 2019, 87, 788-795.	3.6	3
46	Expression pattern and transcriptional regulatory mechanism of noxa gene in grass carp (Ctenopharyngodon idella). Fish and Shellfish Immunology, 2015, 47, 861-867.	3.6	2
47	Characterization of SR-B2a and SR-B2b genes and their ability to promote GCRV infection in grass carp (Ctenopharyngodon idellus). Developmental and Comparative Immunology, 2021, 124, 104202.	2.3	2
48	De novo screening of disease-resistant genes from the chromosome-level genome of rare minnow using CRISPR-cas9 random mutation. GigaScience, 2021, 10, .	6.4	2
49	Structure, organization and expression of common carp (Cyprinus carpio L.) SLP-76 gene. Fish and Shellfish Immunology, 2008, 24, 530-541.	3.6	1
50	Changes in gene and genotype frequencies during the development of the grass carp <scp><i>Ctenopharyngodon idella</i></scp> . Journal of Fish Biology, 2018, 93, 1113-1120.	1.6	0

 51
 LG24 and sex chromosomes. Oncotarget, 2015, 6, 26543-26543.
 1.8
 0