
Burçe Ataç Mogol

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2929911/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Development of functional bread containing nanoencapsulated omega-3 fatty acids. Journal of Food Engineering, 2011, 105, 585-591.	5.2	148
2	Relationship between color and antioxidant capacity of fruits and vegetables. Current Research in Food Science, 2020, 2, 1-10.	5.8	115
3	Model studies on the role of 5-hydroxymethyl-2-furfural in acrylamide formation from asparagine. Food Chemistry, 2012, 132, 168-174.	8.2	97
4	Syneresis and rheological behaviors of set yogurt containing green tea and green coffee powders. Journal of Dairy Science, 2017, 100, 901-907.	3.4	90
5	Acrylamide and 5-hydroxymethylfurfural formation during baking of biscuits: NaCl and temperature–time profile effects and kinetics. Food Research International, 2014, 57, 210-217.	6.2	77
6	Multiple-stage extraction strategy for the determination of acrylamide in foods. Journal of Food Composition and Analysis, 2009, 22, 142-147.	3.9	65
7	Controlling the Maillard Reaction by Reactant Encapsulation: Sodium Chloride in Cookies. Journal of Agricultural and Food Chemistry, 2012, 60, 10808-10814.	5.2	61
8	Rapid determination of amino acids in foods by hydrophilic interaction liquid chromatography coupled to high-resolution mass spectrometry. Analytical and Bioanalytical Chemistry, 2012, 403, 2915-2922.	3.7	57
9	Effects of extrusion, infrared and microwave processing on Maillard reaction products and phenolic compounds in soybean. Journal of the Science of Food and Agriculture, 2014, 94, 45-51.	3.5	56
10	Effects of infrared heating on phenolic compounds and Maillard reaction products in maize flour. Journal of Cereal Science, 2013, 58, 1-7.	3.7	52
11	Compositional, Nutritional, and Functional Characteristics of Instant Teas Produced from Low- and High-Quality Black Teas. Journal of Agricultural and Food Chemistry, 2013, 61, 7529-7536.	5.2	49
12	Computer vision-based analysis of foods: A non-destructive colour measurement tool to monitor quality and safety. Journal of the Science of Food and Agriculture, 2014, 94, 1259-1263.	3.5	49
13	Mitigation of acrylamide and hydroxymethylfurfural in biscuits using a combined partial conventional baking and vacuum post-baking process: Preliminary study at the lab scale. Innovative Food Science and Emerging Technologies, 2014, 26, 265-270.	5.6	44
14	Processing Treatments for Mitigating Acrylamide Formation in Sweetpotato French Fries. Journal of Agricultural and Food Chemistry, 2014, 62, 310-316.	5.2	36
15	Thermal process contaminants: acrylamide, chloropropanols and furan. Current Opinion in Food Science, 2016, 7, 86-92.	8.0	36
16	Role of curcumin in the conversion of asparagine into acrylamide during heating. Amino Acids, 2013, 44, 1419-1426.	2.7	33
17	Nutritional and Functional Characteristics of Seven Grades of Black Tea Produced in Turkey. Journal of Agricultural and Food Chemistry, 2012, 60, 7682-7689.	5.2	30
18	Adsorption of Maillard reaction products from aqueous solutions and sugar syrups using adsorbent resin. Journal of Food Engineering, 2007, 82, 342-350.	5.2	28

Burçe Ataç Mogol

#	Article	IF	CITATIONS
19	Glycation of soy proteins leads to a range of fractions with various supramolecular assemblies and surface activities. Food Chemistry, 2021, 343, 128556.	8.2	28
20	Computer vision-based image analysis for rapid detection of acrylamide in heated foods. Quality Assurance and Safety of Crops and Foods, 2010, 2, 203-207.	3.4	25
21	Effects of different grain mixtures on Maillard reaction products and total antioxidant capacities of breads. Journal of Food Composition and Analysis, 2012, 26, 160-168.	3.9	25
22	Raising agents strongly influence acrylamide and HMF formation in cookies and conditions for asparaginase activity in dough. European Food Research and Technology, 2013, 237, 1-8.	3.3	25
23	Kinetics of Furan Formation from Ascorbic Acid during Heating under Reducing and Oxidizing Conditions. Journal of Agricultural and Food Chemistry, 2013, 61, 10191-10196.	5.2	23
24	Formation of Monochloropropane-1,2-diol and Its Esters in Biscuits during Baking. Journal of Agricultural and Food Chemistry, 2014, 62, 7297-7301.	5.2	23
25	Effect of vacuum-combined baking of cookies on acrylamide content, texture and color. European Food Research and Technology, 2015, 240, 243-249.	3.3	23
26	Inhibition of enzymatic browning in actual food systems by the Maillard reaction products. Journal of the Science of Food and Agriculture, 2010, 90, 2556-2562.	3.5	22
27	Effect of chitosan on the formation of acrylamide and hydroxymethylfurfural in model, biscuit and crust systems. Food and Function, 2016, 7, 3431-3436.	4.6	21
28	Modulation of gastrointestinal digestion of β-lactoglobulin and micellar casein following binding by (â^')-epigallocatechin-3-gallate (EGCG) and green tea flavanols. Food and Function, 2020, 11, 6038-6053.	4.6	17
29	Mitigation of acrylamide in baked potato chips by vacuum baking and combined conventional and vacuum baking processes. LWT - Food Science and Technology, 2021, 144, 111211.	5.2	17
30	Acrylamide in Corn-Based Thermally Processed Foods: A Review. Journal of Agricultural and Food Chemistry, 2022, 70, 4165-4181.	5.2	16
31	Degradation of 5-hydroxymethylfurfural during yeast fermentation. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2011, 28, 1-7.	2.3	14
32	Acrylamide: An Overview of the Chemistry and Occurrence in Foods. , 2019, , 492-499.		7
33	ADSORPTION OF DARK COLORED COMPOUNDS IN APPLE JUICE – EFFECTS OF INITIAL SOLUBLE SOLID CONCENTRATION ON ADSORPTION KINETICS AND MECHANISM. Journal of Food Process Engineering, 2011, 34, 108-124.	2.9	5
34	Furan. , 2019, , 87-105.		2
35	Mitigation of acrylamide formation during malt processing. Journal of Cereal Science, 2022, 106, 103485.	3.7	2
36	Alternative Technologies for the Mitigation of Acrylamide in Processed Foods. , 2016, , 423-441.		0

#	Article	IF	CITATIONS
37	Mitigation of Acrylamide in Thermally Processed Foods. , 2021, , 32-43.		Ο