
Stephan Suckow

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2929501/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Two-Dimensional Platinum Diselenide Waveguide-Integrated Infrared Photodetectors. ACS Photonics, 2022, 9, 859-867.	6.6	14
2	High-efficiency grating coupler for an ultralow-loss Si ₃ N ₄ -based platform. Optics Letters, 2022, 47, 2498.	3.3	13
3	Unbiased Plasmonic-Assisted Integrated Graphene Photodetectors. ACS Photonics, 2022, 9, 1992-2007.	6.6	4
4	Hybrid Devices by Selective and Conformal Deposition of PtSe ₂ at Low Temperatures. Advanced Functional Materials, 2021, 31, 2103936.	14.9	17
5	Bringing Plasmonics Into CMOS Photonic Foundries: Aluminum Plasmonics on Si\$_{3}\$N\$_{4}\$ for Biosensing Applications. Journal of Lightwave Technology, 2019, 37, 5516-5524.	4.6	8
6	High Responsivity and Quantum Efficiency of Graphene/Silicon Photodiodes Achieved by Interdigitating Schottky and Gated Regions. ACS Photonics, 2019, 6, 107-115.	6.6	68
7	Monolithically Integrated Perovskite Semiconductor Lasers on Silicon Photonic Chips by Scalable Top-Down Fabrication. Nano Letters, 2018, 18, 6915-6923.	9.1	98
8	Towards the Predicted High Performance of Waveguide Integrated Electro-Refractive Phase Modulators Based on Graphene. IEEE Photonics Journal, 2017, 9, 1-7.	2.0	15
9	Integrated perovskite lasers on a silicon nitride waveguide platform by cost-effective high throughput fabrication. Optics Express, 2017, 25, 13199.	3.4	55
10	Infrared transparent graphene heater for silicon photonic integrated circuits. Optics Express, 2016, 24, 7871.	3.4	44
11	N2O plasma treatment for minimization of background plating in silicon solar cells with Ni–Cu front side metallization. Solar Energy Materials and Solar Cells, 2016, 144, 671-677.	6.2	8
12	56 Gb/s WDM transmitter module based on silicon microrings using comb lasers. , 2015, , .		2
13	Study of Nickel Silicide Formation and Associated Fill-Factor Loss Analysis for Silicon Solar Cells With Plated Ni-Cu Based Metallization. IEEE Journal of Photovoltaics, 2015, 5, 1554-1562.	2.5	12
14	Fast and reliable calculation of the twoâ€diode model without simplifications. Progress in Photovoltaics: Research and Applications, 2014, 22, 494-501.	8.1	71
15	Phosphorus gettering of iron by screenâ€printed emitters in monocrystalline Czochralski silicon wafers. Progress in Photovoltaics: Research and Applications, 2013, 21, 900-905.	8.1	1
16	SiliconPV 2012 generation of defect-related acceptor states by laser doping. Solar Energy Materials and Solar Cells, 2012, 106, 2-6.	6.2	7
17	Defect passivation by hydrogen reincorporation for silicon quantum dots in SiC/SiOx hetero-superlattice. Journal of Non-Crystalline Solids, 2012, 358, 2145-2149.	3.1	20
18	Optical evaluation of doping concentration in SiO ₂ doping source layer for silicon quantum dot materials. EPJ Photovoltaics, 2011, 2, 25001.	1.6	2

STEPHAN SUCKOW

#	Article	IF	CITATIONS
19	Structural characterization of crystallized Si thin film material by HRTEM and Raman spectroscopy. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 588-591.	1.8	6
20	Gettering in multicrystalline silicon wafers with screenâ€printed emitters. Progress in Photovoltaics: Research and Applications, 2011, 19, 946-953.	8.1	4
21	Quantum wells based on Si/SiOx stacks for nanostructured absorbers. Solar Energy Materials and Solar Cells, 2010, 94, 1893-1896.	6.2	7
22	Geometric broadening in resonant tunneling through Si quantum dots. Energy Procedia, 2010, 2, 207-212.	1.8	0
23	Improved charge transport through Si based multiple quantum wells with substoichiometric SiOx barrier layers. Journal of Applied Physics, 2009, 106, 083706.	2.5	6
24	Resonant and phonon-assisted tunneling transport through silicon quantum dots embedded in SiO2. Applied Physics Letters, 2008, 93, 132111.	3.3	10
25	Stark effect at dislocations in silicon for modulation of a 1.5 \hat{l} /4 m light emitter. Proceedings of SPIE, 2008, , .	0.8	1