List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2929054/publications.pdf Version: 2024-02-01

Μλελριι Τλνιλκλ

#	Article	IF	CITATIONS
1	Blood compatible aspects of poly(2-methoxyethylacrylate) (PMEA)—relationship between protein adsorption and platelet adhesion on PMEA surface. Biomaterials, 2000, 21, 1471-1481.	11.4	460
2	Superhydrophobic and Lipophobic Properties of Self-Organized Honeycomb and Pincushion Structures. Langmuir, 2005, 21, 3235-3237.	3.5	373
3	Preparation of Honeycomb-Patterned Polyimide Films by Self-Organization. Langmuir, 2003, 19, 6297-6300.	3.5	240
4	Study of Blood Compatibility with Poly(2-methoxyethyl acrylate). Relationship between Water Structure and Platelet Compatibility in Poly(2-methoxyethylacrylate-co-2-hydroxyethylmethacrylate). Biomacromolecules, 2002, 3, 36-41.	5.4	235
5	The roles of water molecules at the biointerface of medical polymers. Polymer Journal, 2013, 45, 701-710.	2.7	216
6	Effect of water structure on blood compatibility? thermal analysis of water in poly(meth)acrylate. Journal of Biomedical Materials Research Part B, 2004, 68A, 684-695.	3.1	198
7	Designing Smart Biomaterials for Tissue Engineering. International Journal of Molecular Sciences, 2018, 19, 17.	4.1	188
8	Fabrication of polymeric biomaterials: a strategy for tissue engineering and medical devices. Journal of Materials Chemistry B, 2015, 3, 8224-8249.	5.8	176
9	Cold crystallization of water in hydrated poly(2-methoxyethyl acrylate) (PMEA). Polymer International, 2000, 49, 1709-1713.	3.1	173
10	Time-Resolved In Situ ATR-IR Observations of the Process of Sorption of Water into a Poly(2-methoxyethyl acrylate) Film. Langmuir, 2007, 23, 3750-3761.	3.5	169
11	Structure of Water Incorporated in Sulfobetaine Polymer Films as Studied by ATR-FTIR. Macromolecular Bioscience, 2005, 5, 314-321.	4.1	157
12	Correlation between the Structure of Water in the Vicinity of Carboxybetaine Polymers and Their Blood-Compatibility. Langmuir, 2005, 21, 11932-11940.	3.5	157
13	Nonthrombogenic, stretchable, active multielectrode array for electroanatomical mapping. Science Advances, 2018, 4, eaau2426.	10.3	155
14	Decellularized Extracellular Matrix as an <i>In Vitro</i> Model to Study the Comprehensive Roles of the ECM in Stem Cell Differentiation. Stem Cells International, 2016, 2016, 1-10.	2.5	141
15	Design of biocompatible and biodegradable polymers based on intermediate water concept. Polymer Journal, 2015, 47, 114-121.	2.7	126
16	Biodegradable honeycomb-patterned film composed of poly(lactic acid) and dioleoylphosphatidylethanolamine. Biomaterials, 2006, 27, 1797-1802.	11.4	112
17	Structural Changes in Poly(2-methoxyethyl acrylate) Thin Films Induced by Absorption of Bisphenol A. An Infrared and Sum Frequency Generation (SFG) Study. Macromolecules, 2003, 36, 5694-5703.	4.8	96
18	In situ studies on protein adsorption onto a poly(2-methoxyethylacrylate) surface by a quartz crystal microbalance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 193, 145-152.	4.7	94

#	Article	IF	CITATIONS
19	Effect of Honeycomb-Patterned Surface Topography on the Adhesion and Signal Transduction of Porcine Aortic Endothelial Cells. Langmuir, 2007, 23, 8114-8120.	3.5	88
20	Antiâ€Biofouling Properties of Polymers with a Carboxybetaine Moiety. Macromolecular Bioscience, 2009, 9, 63-70.	4.1	86
21	Studies on bound water restrained by poly(2-methacryloyloxyethyl phosphorylcholine): Comparison with polysaccharide–water systems. Acta Biomaterialia, 2010, 6, 2077-2082.	8.3	86
22	Mechanism underlying bioinertness of self-assembled monolayers of oligo(ethyleneglycol)-terminated alkanethiols on gold: protein adsorption, platelet adhesion, and surface forces. Physical Chemistry Chemical Physics, 2012, 14, 10196.	2.8	84
23	The Relationship Between Water Structure and Blood Compatibility in Poly(2-methoxyethyl Acrylate) (PMEA) Analogues. Macromolecular Bioscience, 2015, 15, 1296-1303.	4.1	82
24	Study on kinetics of early stage protein adsorption on poly(2-methoxyethylacrylate) (PMEA) surface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 203, 195-204.	4.7	81
25	Two-Dimensional DNA-Mimetic Molecular Organizations at the Airâ^'Water Interface. Journal of the American Chemical Society, 1997, 119, 2341-2342.	13.7	80
26	Effect of Pore Size of Self-Organized Honeycomb-Patterned Polymer Films on Spreading, Focal Adhesion, Proliferation, and Function of Endothelial Cells. Journal of Nanoscience and Nanotechnology, 2007, 7, 763-772.	0.9	78
27	Clarification of the Blood Compatibility Mechanism by Controlling the Water Structure at the Blood–Poly(meth)acrylate Interface. Journal of Biomaterials Science, Polymer Edition, 2010, 21, 1849-1863.	3.5	73
28	Control of hepatocyte adhesion and function on self-organized honeycomb-patterned polymer film. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 284-285, 464-469.	4.7	72
29	Cold crystallization of poly(ethylene glycol)–water systems. Thermochimica Acta, 2007, 465, 59-66.	2.7	71
30	Structure of Water Sorbed into Poly(MEA-co-HEMA) Films As Examined by ATRâ^'IR Spectroscopy. Langmuir, 2003, 19, 429-435.	3.5	69
31	Poly(ω-methoxyalkyl acrylate)s: Nonthrombogenic Polymer Family with Tunable Protein Adsorption. Biomacromolecules, 2017, 18, 4214-4223.	5.4	69
32	Fourier transform infrared study on the sorption of water to various kinds of polymer thin films. Journal of Polymer Science, Part B: Polymer Physics, 2001, 39, 2175-2182.	2.1	65
33	Network structures and dynamics of dry and swollen poly(acrylate)s. Characterization of high- and low-frequency motions as revealed by suppressed or recovered intensities (SRI) analysis of 13C NMR. Polymer, 2009, 50, 6091-6099.	3.8	65
34	Design of Polymeric Biomaterials: The "Intermediate Water Concept― Bulletin of the Chemical Society of Japan, 2019, 92, 2043-2057.	3.2	65
35	Honeycomb-like architecture produced by living bacteria, Gluconacetobacter xylinus. Carbohydrate Polymers, 2007, 69, 1-6.	10.2	64
36	The Structure of Water Sorbed to Polymethoxyethylacrylate Film as Examined by FT–IR Spectroscopy. Journal of Colloid and Interface Science, 2001, 242, 133-140.	9.4	56

#	Article	IF	CITATIONS
37	Effect of honeycomb film on protein adsorption, cell adhesion and proliferation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 284-285, 548-551.	4.7	55
38	Relationship between adsorbed fibronectin and cell adhesion on a honeycomb-patterned film. Surface Science, 2006, 600, 3785-3791.	1.9	55
39	Control of neural stem cell differentiation on honeycomb films. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 313-314, 536-540.	4.7	55
40	Morphological changes in neurons by self-organized patterned films. E-Journal of Surface Science and Nanotechnology, 2005, 3, 159-164.	0.4	53
41	Effect of Local Chain Dynamics on a Bioinert Interface. Langmuir, 2015, 31, 3661-3667.	3.5	52
42	Longâ€Term Implantable, Flexible, and Transparent Neural Interface Based on Ag/Au Core–Shell Nanowires. Advanced Healthcare Materials, 2019, 8, e1900130.	7.6	52
43	Effect of pore size of honeycomb films on the morphology, adhesion and cytoskeletal organization of cardiac myocytes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 313-314, 530-535.	4.7	51
44	Thermal Properties of Freezing Bound Water Restrained by Polysaccharides. Journal of Biomaterials Science, Polymer Edition, 2010, 21, 1865-1875.	3.5	51
45	Platelet adhesion to human umbilical vein endothelial cells cultured on anionic hydrogel scaffolds. Biomaterials, 2007, 28, 1752-1760.	11.4	50
46	Small-Diameter Porous Poly (É›-Caprolactone) Films Enhance Adhesion and Growth of Human Cultured Epidermal Keratinocyte and Dermal Fibroblast Cells. Tissue Engineering, 2007, 13, 789-798.	4.6	49
47	Tuning of cell proliferation on tough gels by critical charge effect. Journal of Biomedical Materials Research - Part A, 2009, 88A, 74-83.	4.0	49
48	Water Structure and Blood Compatibility of Poly(tetrahydrofurfuryl acrylate). Journal of Biomaterials Science, Polymer Edition, 2009, 20, 591-603.	3.5	48
49	Design of novel 2D and 3D biointerfaces using self-organization to control cell behavior. Biochimica Et Biophysica Acta - General Subjects, 2011, 1810, 251-258.	2.4	47
50	Comparison of measurement techniques for the identification of bound water restrained by polymers. Thermochimica Acta, 2012, 532, 159-163.	2.7	46
51	Decellularized matrices as in vitro models of extracellular matrix in tumor tissues at different malignant levels: Mechanism of 5-fluorouracil resistance in colorectal tumor cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 2749-2757.	4.1	46
52	Prevention of postoperative adhesions by a novel honeycombâ€patterned poly(lactide) film in a rat experimental model. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2008, 86B, 353-359.	3.4	45
53	Characterization of the Attachment Mechanisms of Tissueâ€Derived Cell Lines to Bloodâ€Compatible Polymers. Advanced Healthcare Materials, 2014, 3, 775-784.	7.6	45
54	2H-NMR and 13C-NMR Study of the Hydration Behavior of Poly(2-methoxyethyl acrylate), Poly(2-hydroxyethyl methacrylate) and Poly(tetrahydrofurfuryl acrylate) in Relation to Their Blood Compatibility as Biomaterials. Journal of Biomaterials Science, Polymer Edition, 2010, 21, 1911-1924.	3.5	43

#	Article	IF	CITATIONS
55	Comparative study on water structures in polyHEMA and polyMEA by XRDâ€DSC simultaneous measurement. Journal of Applied Polymer Science, 2009, 111, 476-481.	2.6	40
56	Regioselective Ring-Opening Metathesis Polymerization of 3-Substituted Cyclooctenes with Ether Side Chains Macromolecules, 2016, 49, 2493-2501.	4.8	40
57	Design of novel biointerfaces (II). Fabrication of self-organized porous polymer film with highly uniform pores. Bio-Medical Materials and Engineering, 2004, 14, 439-46.	0.6	40
58	Effect of interfacial structure on bioinert properties of poly(2-methoxyethyl acrylate)/poly(methyl) Tj ETQq0 0 0 r	gBT /Overl 2.8	ock 10 Tf 50
59	Regulation of the Contribution of Integrin to Cell Attachment on Poly(2-Methoxyethyl Acrylate) (PMEA) Analogous Polymers for Attachment-Based Cell Enrichment. PLoS ONE, 2015, 10, e0136066.	2.5	37
60	Conformable microneedle pH sensors via the integration of two different siloxane polymers for mapping peripheral artery disease. Science Advances, 2021, 7, eabi6290.	10.3	36
61	Breast cancer cell behaviors on staged tumorigenesis-mimicking matrices derived from tumor cells at various malignant stages. Biochemical and Biophysical Research Communications, 2013, 439, 291-296.	2.1	34
62	Interfacial Structures and Fibrinogen Adsorption at Blood-Compatible Polymer/Water Interfaces. ACS Biomaterials Science and Engineering, 2016, 2, 2122-2126.	5.2	34
63	Production of mesoscopically patterned cellulose film. Bioresource Technology, 2005, 96, 1955-1958.	9.6	33
64	Structure of Water Incorporated in Amphoteric Polymer Thin Films as Revealed by FTâ€IR Spectroscopy. Macromolecular Bioscience, 2008, 8, 77-85.	4.1	32
65	Surface segregation of poly(2-methoxyethyl acrylate) in a mixture with poly(methyl methacrylate). Physical Chemistry Chemical Physics, 2011, 13, 4928.	2.8	32
66	Effect of Sodium Chloride on Hydration Structures of PMEA and P(MPC- <i>r</i> -BMA). Langmuir, 2014, 30, 10698-10703.	3.5	31
67	Role of interfacial water in determining the interactions of proteins and cells with hydrated materials. Colloids and Surfaces B: Biointerfaces, 2021, 198, 111449.	5.0	31
68	DNA monolayers complexed with amphiphilic intercalator at the air-water interface. Thin Solid Films, 1996, 284-285, 780-783.	1.8	29
69	Study on blood compatibility with poly(2-methoxyethylacrylate)—relationship between surface structure, water structure, and platelet compatibility in 2-methoxyethylacrylate/2-hydroxyethylmethacrylate diblock copolymer. Journal of Biomedical	4.0	28
70	Blood-Compatible Polymer for Hepatocyte Culture with High Hepatocyte-Specific Functions toward Bioartificial Liver Development. ACS Applied Materials & 2005, 100 (2015), 100 (2015), 100 (2015), 2015), 2015	8.0	28

71	Monoether-Tagged Biodegradable Polycarbonate Preventing Platelet Adhesion and Demonstrating Vascular Cell Adhesion: A Promising Material for Resorbable Vascular Grafts and Stents. Biomacromolecules, 2017, 18, 3834-3843.	5.4	28
72	Blood-compatible poly(2-methoxyethyl acrylate) for the adhesion and proliferation of endothelial and smooth muscle cells Colloids and Surfaces B: Biointerfaces, 2016, 145, 586-596.	5.0	27

4.8

22

#	Article	IF	CITATIONS
73	Synthesis and Thrombogenicity Evaluation of Poly(3-methoxypropionic acid vinyl ester): A Candidate for Blood-Compatible Polymers. Biomacromolecules, 2017, 18, 1609-1616.	5.4	27
74	Mechanical Properties with Respect to Water Content of Host–Guest Hydrogels. Macromolecules, 2021, 54, 8067-8076.	4.8	27
75	PREPARATION OF THE HONEYCOMB PATTERNED POROUS FILM OF BIODEGRADABLE POLYMER FOR TISSUE ENGINEERING SCAFFOLDS. International Journal of Nanoscience, 2002, 01, 689-693.	0.7	26
76	Effect of Honeycomb-Patterned Surface Topography on the Function of Mesenteric Adipocytes. Journal of Biomaterials Science, Polymer Edition, 2010, 21, 1947-1956.	3.5	26
77	Evaluation of Factors To Determine Platelet Compatibility by Using Self-Assembled Monolayers with a Chemical Gradient. Langmuir, 2015, 31, 7100-7105.	3.5	26
78	Direct observation of interaction between proteins and blood-compatible polymer surfaces. Biointerphases, 2007, 2, 119-125.	1.6	25
79	Effect of honeycomb-patterned structure on chondrocyte behavior in vitro. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 313-314, 520-525.	4.7	25
80	Adhesion-based simple capture and recovery of circulating tumor cells using a blood-compatible and thermo-responsive polymer-coated substrate. RSC Advances, 2016, 6, 89103-89112.	3.6	25
81	Analysis of Interaction Between Interfacial Structure and Fibrinogen at Blood-Compatible Polymer/Water Interface. Frontiers in Chemistry, 2018, 6, 542.	3.6	25
82	Effect of bound water content on cell adhesion strength to water-insoluble polymers. Acta Biomaterialia, 2021, 134, 313-324.	8.3	25
83	Formation of hydroxyapatite on a self-organized 3D honeycomb-patterned biodegradable polymer film. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 313-314, 515-519.	4.7	24
84	Synthesis of Sequence-Specific Polymers with Amide Side Chains via Regio-/Stereoselective Ring-Opening Metathesis Polymerization of 3-Substituted <i>cis</i> -Cyclooctene. Macromolecules, 2016, 49, 8154-8161.	4.8	24
85	Infrared Spectra and Hydrogen-Bond Configurations of Water Molecules at the Interface of Water-Insoluble Polymers under Humidified Conditions. Journal of Physical Chemistry B, 2022, 126, 4143-4151.	2.6	24
86	Quartz Crystal Microbalance and Infrared Reflection Absorption Spectroscopy Characterization of Bisphenol A Absorption in the Poly(acrylate) Thin Films. Analytical Chemistry, 2004, 76, 788-795.	6.5	23
87	Topographical control of neurite extension on stripe-patterned polymer films. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 284-285, 470-474.	4.7	22
88	Promotion of Adipogenesis of 3T3-L1 Cells on Protein Adsorption-Suppressing Poly(2-methoxyethyl) Tj ETQq0 0	0 rgBT /0	verlock 10 Tf
89	Surface force and vibrational spectroscopic analyses of interfacial water molecules in the vicinity of methoxy-tri(ethylene glycol)-terminated monolayers: mechanisms underlying the effect of lateral packing density on bioinertness. Journal of Biomaterials Science, Polymer Edition, 2017, 28, 1231-1243.	3.5	22

⁹⁰Side-Chain Spacing Control of Derivatives of Poly(2-methoxyethyl acrylate): Impact on Hydration States and Antithrombogenicity. Macromolecules, 2020, 53, 8570-8580.

#	Article	IF	CITATIONS
91	Stress Relaxation Measurement of Fibroblast Cells with Atomic Force Microscopy. Japanese Journal of Applied Physics, 2007, 46, 5552.	1.5	21
92	Microporous "Honeycomb―Films Support Enhanced Bone Formation <i>In Vitro</i> . Tissue Engineering - Part A, 2013, 19, 2087-2096.	3.1	21
93	Thermosensitive Polymer Biocompatibility Based on Interfacial Structure at Biointerface. ACS Biomaterials Science and Engineering, 2018, 4, 1591-1597.	5.2	21
94	Fabrication of Ordered Arrays of Biodegradable Polymer Pincushions Using Selfâ€Organized Honeycombâ€Patterned Films. Macromolecular Symposia, 2009, 279, 175-182.	0.7	20
95	Dynamics of a bioinert polymer in hydrated states by dielectric relaxation spectroscopy. Physical Chemistry Chemical Physics, 2017, 19, 1389-1394.	2.8	20
96	Effect of the Molecular Weight of Poly(2-methoxyethyl acrylate) on Interfacial Structure and Blood Compatibility. Langmuir, 2019, 35, 2808-2813.	3.5	20
97	Hydration Structure of Poly(2-methoxyethyl acrylate): Comparison with a 2-Methoxyethyl Acetate Model Monomer. Journal of Biomaterials Science, Polymer Edition, 2010, 21, 1925-1935.	3.5	19
98	Optimization of the tissue source, malignancy, and initial substrate of tumor cell-derived matrices to increase cancer cell chemoresistance against 5-fluorouracil. Biochemical and Biophysical Research Communications, 2015, 457, 353-357.	2.1	19
99	Controlling the Hydration Structure with a Small Amount of Fluorine To Produce Blood Compatible Fluorinated Poly(2-methoxyethyl acrylate). Biomacromolecules, 2019, 20, 2265-2275.	5.4	19
100	Analyses of equilibrium water content and blood compatibility for Poly(2-methoxyethyl acrylate) by molecular dynamics simulation. Polymer, 2019, 170, 76-84.	3.8	19
101	Effect of Osmolytes on Water Mobility Correlates with Their Stabilizing Effect on Proteins. Journal of Physical Chemistry B, 2022, 126, 2466-2475.	2.6	19
102	Adhesion and Proliferation of Human Periodontal Ligament Cells on Poly(2-methoxyethyl acrylate). BioMed Research International, 2014, 2014, 1-14.	1.9	18
103	Evaluation of the hemocompatibility of hydrated biodegradable aliphatic carbonyl polymers with a subtle difference in the backbone structure based on the intermediate water concept and surface hydration. Polymer Journal, 2015, 47, 469-473.	2.7	18
104	Fluorine-containing bio-inert polymers: Roles of intermediate water. Acta Biomaterialia, 2022, 138, 34-56.	8.3	18
105	Multivariate Curve Resolution Analysis on the Multi-Component Water Sorption Process into a Poly(2-methoxyethyl Acrylate) Film. Applied Spectroscopy, 2008, 62, 46-50.	2.2	17
106	Synthesis of antithrombotic poly(carbonate-urethane)s through a sequential process of ring-opening polymerization and polyaddition facilitated by organocatalysts. European Polymer Journal, 2017, 95, 728-736.	5.4	17
107	Elucidating the Feature of Intermediate Water in Hydrated Poly(ï‰-methoxyalkyl acrylate)s by Molecular Dynamics Simulation and Differential Scanning Calorimetry Measurement. ACS Biomaterials Science and Engineering, 2020, 6, 3915-3924.	5.2	17
108	Phase Angle Description of Perturbation Correlation Analysis and its Application to Time-Resolved Infrared Spectra. Applied Spectroscopy, 2007, 61, 867-872.	2.2	16

#	Article	IF	CITATIONS
109	Synthesis of Graft Copolymers Based on Poly(2â€Methoxyethyl Acrylate) and Investigation of the Associated Water Structure. Macromolecular Rapid Communications, 2012, 33, 319-325.	3.9	16
110	Different hydration states and passive tumor targeting ability of polyethylene glycol-modified dendrimers with high and low PEG density. Materials Science and Engineering C, 2021, 126, 112159.	7.3	16
111	Roles of interfacial water states on advanced biomedical material design. Advanced Drug Delivery Reviews, 2022, 186, 114310.	13.7	16
112	Relationship between blood compatibility and water structure—Comparative study between 2-methoxyethylacrylate- and 2-methoxyethylmethacrylate-based random copolymers. Journal of Biomedical Materials Research - Part A, 2007, 81A, 710-719.	4.0	15
113	Mechanical Effect of Acetic Acid Lignin Adsorption on Honeycomb-Patterned Cellulosic Films. Journal of Wood Chemistry and Technology, 2010, 30, 348-359.	1.7	15
114	Non-tumor mast cells cultured in vitro on a honeycomb-like structured film proliferate with multinucleated formation. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 313-319.	3.3	15
115	Evaluation of initial cell adhesion on poly (2-methoxyethyl acrylate) (PMEA) analogous polymers. Journal of Biomaterials Science, Polymer Edition, 2017, 28, 986-999.	3.5	15
116	Intermediate Water on Calcium Phosphate Minerals: Its Origin and Role in Crystal Growth. ACS Applied Bio Materials, 2019, 2, 981-986.	4.6	15
117	Enhanced Cell Survival and Yield of Rat Small Hepatocytes by Honeycomb-Patterned Films. Japanese Journal of Applied Physics, 2008, 47, 1429-1434.	1.5	14
118	The Morphology and Functions of Articular Chondrocytes on a Honeycomb-Patterned Surface. BioMed Research International, 2014, 2014, 1-10.	1.9	14
119	Biocompatibility and hemocompatibility evaluation of polyether urethanes synthesized using DBU organocatalyst. European Polymer Journal, 2016, 84, 750-758.	5.4	14
120	Hydration States and Blood Compatibility of Hydrogen-Bonded Supramolecular Poly(2-methoxyethyl) Tj ETQq0 C	0 rgBT /C	verlock 10 Tf
121	Control of interfacial structures and anti-platelet adhesion property of blood-compatible random copolymers. Journal of Biomaterials Science, Polymer Edition, 2020, 31, 207-218.	3.5	13
122	Silsesquioxane/Poly(2-methoxyethyl acrylate) Hybrid with Both Antithrombotic and Endothelial Cell Adhesive Properties. ACS Applied Polymer Materials, 2020, 2, 4790-4801.	4.4	13
123	Methoxy-Functionalized Glycerol-Based Aliphatic Polycarbonate: Organocatalytic Synthesis, Blood Compatibility, and Hydrolytic Property. ACS Biomaterials Science and Engineering, 2021, 7, 472-481.	5.2	13
124	Construction of a blood-compatible interface based on surface segregation in a polymer blend. Polymer, 2015, 78, 219-224.	3.8	12
125	Understanding the Effect of Hydration on the Bio-inert Properties of 2-Hydroxyethyl Methacrylate Copolymers with Small Amounts of Amino- or/and Fluorine-Containing Monomers. ACS Biomaterials Science and Engineering, 2020, 6, 2855-2866.	5.2	12
126	<i>In vitro</i> and <i>in vivo</i> blood compatibility of concentrated polymer brushes. Journal of Materials Chamistry B, 2021, 9, 5794,5804	5.8	12

Materials Chemistry B, 2021, 9, 5794-5804.

#	Article	IF	CITATIONS
127	Carborane as an Alternative Efficient Hydrophobic Tag for Protein Degradation. Bioconjugate Chemistry, 2021, 32, 2377-2385.	3.6	12
128	Selective Accumulation to Tumor Cells with Coacervate Droplets Formed from a Water-Insoluble Acrylate Polymer. Biomacromolecules, 2022, 23, 1569-1580.	5.4	12
129	Effect of interfacial structure based on grafting density of poly(2-methoxyethyl acrylate) on blood compatibility. Colloids and Surfaces B: Biointerfaces, 2021, 199, 111517.	5.0	11
130	Investigating the Intermediate Water Feature of Hydrated Titanium Containing Bioactive Glass. International Journal of Molecular Sciences, 2021, 22, 8038.	4.1	11
131	Biocompatible poly(<i>N</i> -(ω-acryloyloxy- <i>n</i> -alkyl)-2-pyrrolidone)s with widely-tunable lower critical solution temperatures (LCSTs): a promising alternative to poly(<i>N</i> -isopropylacrylamide). Polymer Chemistry, 2022, 13, 2519-2530.	3.9	11
132	Experimental Evidence of Slow Mode Water in the Vicinity of Poly(ethylene oxide) at Physiological Temperature. Journal of Physical Chemistry B, 2022, 126, 1758-1767.	2.6	11
133	Integrin-independent Cell Adhesion Substrates: Possibility of Applications for Mechanobiology Research. Analytical Sciences, 2016, 32, 1151-1158.	1.6	10
134	Molecular Dynamics Study on the Water Mobility and Side-Chain Flexibility of Hydrated Poly(ω-methoxyalkyl acrylate)s. ACS Biomaterials Science and Engineering, 2020, 6, 6690-6700.	5.2	10
135	Behavior of supramolecular cross-links formed by host-guest interactions in hydrogels responding to water contents. , 2022, 1, 100001.		10
136	Characterization of Hydration Water Bound to Choline Phosphate-Containing Polymers. Biomacromolecules, 2022, 23, 2999-3008.	5.4	10
137	Newly developed controlled release subcutaneous formulation for tramadol hydrochloride. Saudi Pharmaceutical Journal, 2018, 26, 585-592.	2.7	9
138	Study on the Water Structure and Blood Compatibility of Poly(acryloylmorpholine-r-butyl) Tj ETQq0 0 0 rgBT /Ov	erlock 10 ⁻	Tf 50 302 Td
139	Optimal Plasticizer Content for Magnetic Elastomers Used for Cell Culture Substrate. Chemistry Letters, 2020, 49, 280-283.	1.3	8
140	Periodically Functionalized Linear Polyethylene with Tertiary Amino Groups via Regioselective Ring-Opening Metathesis Polymerization. Macromolecules, 2021, 54, 2862-2872.	4.8	8
141	Chain-End Effect for Intermediate Water Formation of Poly(2-Methoxyethyl Acrylate). Organic Materials, 2021, 03, 214-220.	2.0	8
142	Protein- and Cell-Resistance of Zwitterionic Peptide-Based Self-Assembled Monolayers: Anti-Biofouling Tests and Surface Force Analysis. Frontiers in Chemistry, 2021, 9, 748017.	3.6	8
143	Morphological Changes of Neurons on Self-Organized Honeycomb Patterned Films. Kobunshi Ronbunshu, 2004, 61, 628-633.	0.2	7
144	Proliferation of Periodontal Ligament Cells on Biodegradable Honeycomb Film Scaffold with Unified Micropore Organization. Journal of Biomechanical Science and Engineering, 2010, 5, 252-261.	0.3	7

#	Article	IF	CITATIONS
145	A fully covered self-expandable metallic stent coated with poly (2-methoxyethyl acrylate) and its derivative: In vitro evaluation of early-stage biliary sludge formation inhibition. Materials Science and Engineering C, 2021, 120, 111386.	7.3	7
146	Effects of Side-Chain Spacing and Length on Hydration States of Poly(2-methoxyethyl acrylate) Analogues: A Molecular Dynamics Study. ACS Biomaterials Science and Engineering, 2021, 7, 2383-2391.	5.2	7
147	Effect of pendant groups on the blood compatibility and hydration states of poly(2â€oxazoline)s. Journal of Polymer Science, 2021, 59, 2559-2570.	3.8	7
148	Protein Stabilization Effect of Zwitterionic Osmolyte-bearing Polymer. Chemistry Letters, 2021, 50, 1699-1702.	1.3	7
149	Water Structure and Polymer Dynamics in Hydrated Blood Compatible Polymers. Kobunshi Ronbunshu, 2011, 68, 133-146.	0.2	6
150	Blood-compatible poly (2-methoxyethyl acrylate) for the adhesion and proliferation of lung cancer cells toward the isolation and analysis of circulating tumor cells. Journal of Bioactive and Compatible Polymers, 2016, 31, 361-372.	2.1	6
151	Attachment and Growth of Fibroblast Cells on Poly (2-Methoxyethyl Acrylate) Analog Polymers as Coating Materials. Coatings, 2021, 11, 461.	2.6	6
152	Poly(tertiary amide acrylate) Copolymers Inspired by Poly(2-oxazoline)s: Their Blood Compatibility and Hydration States. Biomacromolecules, 2021, 22, 2718-2728.	5.4	6
153	A β-hairpin peptide with pH-controlled affinity for tumor cells. Chemical Communications, 2022, 58, 505-508.	4.1	6
154	Hydration Mechanism in Blood-Compatible Polymers Undergoing Phase Separation. Langmuir, 2022, 38, 1090-1098.	3.5	6
155	A simple strategy for robust preparation and characterisation of hydrogels derived from chitosan and amino functional monomers for biomedical applications. Journal of Materials Chemistry B, 2018, 6, 5115-5129.	5.8	5
156	In Vitro Endothelialization Test of Biomaterials Using Immortalized Endothelial Cells. PLoS ONE, 2016, 11, e0158289.	2.5	5
157	Local Dynamics of the Hydration Water and Poly(Methyl Methacrylate) Chains in PMMA Networks. Frontiers in Chemistry, 2021, 9, 728738.	3.6	5
158	Effect of amount of hydrated water and mobility of hydrated poly(<scp>2â€methoxyethyl</scp>) Tj ETQq0 0 0 i	gBT /Over	oc <u>k</u> 10 Tf 50
159	Observing the repulsion layers on blood-compatible polymer-grafted interfaces by frequency modulation atomic force microscopy. Materials Science and Engineering C, 2022, 133, 112596.	7.3	5
160	Design Concept of Dialyzer Biomaterials: How to Find Biocompatible Polymers Based on the Biointerfacial Water Structure. Contributions To Nephrology, 2017, 189, 137-143.	1.1	4
161	Blood-Compatible Poly(2-methoxyethyl acrylate) Induces Blebbing-like Phenomenon and Promotes Viability of Tumor Cells in Serum-Free Medium. ACS Applied Bio Materials, 2020, 3, 1858-1864. 	4.6	4
162	Nanoscopic analyses of cell-adhesive protein adsorption on poly(2-methoxyethyl acrylate) surfaces. Biomaterials Science, 2022, 10, 2953-2963.	5.4	4

#	Article	IF	CITATIONS
163	Sol-gel silicate glass doped with silver for bone regeneration: Antibacterial activity, intermediate water, and cell death mode. , 2022, 138, 212965.		4
164	Manipulation of Surface Hydration States by Tuning the Oligo(Ethylene Glycol) Moieties on PEDOT to Achieve Plateletâ€Resistant Bioelectrode Applications. Advanced Materials Interfaces, 2022, 9, .	3.7	4
165	Blood Compatibility of Poly(2-methoxyethyl acrylate)-Design of Novel Biointerfaces. Kobunshi Ronbunshu, 2003, 60, 415-427.	0.2	3
166	Cold crystallization of water in hydrated poly(2-methoxyethyl acrylate) (PMEA). , 2000, 49, 1709.		3
167	Biomedical Application of Patterned Polymer Films Prepared by Self-organization. Hyomen Kagaku, 2006, 27, 170-175.	0.0	3
168	Modulation of Biological Responses of Tumor Cells Adhered to Poly(2-methoxyethyl acrylate) with Increasing Cell Viability under Serum-Free Conditions. ACS Biomaterials Science and Engineering, 2022, 8, 672-681.	5.2	3
169	Fabrication of Novel Biocompatible Surfaces by Two-Photon Absorption Technique Using Femtosecond Laser. Molecular Crystals and Liquid Crystals, 2009, 505, 219/[457]-230/[468].	0.9	2
170	Design of Biocompatible Polymers Based on the Intermediate Water Concept. Journal of the Adhesion Society of Japan, 2015, 51, 423-433.	0.0	2
171	Antithrombotic Protein Filter Composed of Hybrid Tissue-Fabric Material has a Long Lifetime. Annals of Biomedical Engineering, 2017, 45, 1352-1364.	2.5	2
172	Maintenance of Cartilaginous Gene Expression of Serially Subcultured Chondrocytes on Poly(2â€Methoxyethyl Acrylate) Analogous Polymers. Macromolecular Bioscience, 2017, 17, 1700297.	4.1	2
173	Chondrocyte Shapes and Detachment on a Thermoresponsive Poly(2-methoxyethyl acrylate) Analog for the Development of New Chondrocytes Subculture Substrate. Chemistry Letters, 2018, 47, 107-109.	1.3	2
174	First Observation of the Hydration Layer around Polymer Chain by Scattering and Its Relationship to Thromboresistance: Dilute Solution Properties of PMEA in THF/Water. Journal of Physical Chemistry B, 2021, 125, 7251-7261.	2.6	2
175	Effect of Branching Degree of Dendritic Polyglycerols on Plasma Protein Adsorption: Relationship between Hydration States and Surface Morphology. Langmuir, 2021, 37, 8534-8543.	3.5	2
176	Relationship between blood compatibility of polymer material and water structure in it. Journal of Advanced Science, 2005, 17, 245-249.	0.1	2
177	Surfactant-free suspension polymerization of hydrophilic monomers with an oil-in-water system for the preparation of microparticles toward the selective isolation of tumor cells. Materials Advances, 2022, 3, 5043-5054.	5.4	2
178	Relationship between Adsorbed Fibronectin and Cell Adhesion on a Honeycomb-patterned Film. Hyomen Kagaku, 2006, 27, 502-510.	0.0	1
179	Honeycomb-like Structured Film Regulates Mediator Release from Non-Tumor Mast Cells. European Journal of Inflammation, 2014, 12, 515-520.	0.5	1
180	Intercorrelation between Interfacial Behavior of Water and Biocompatibility. Hyomen Kagaku, 2015, 36, 424-429.	0.0	1

#	ARTICLE	IF	CITATIONS
181	Biosafety of a novel covered self-expandable metal stent coated with poly(2-methoxyethyl acrylate) in vivo. PLoS ONE, 2021, 16, e0257828.	2.5	1
182	Design of Multifunctional Soft Biomaterials: Based on the Intermediate Water Concept. , 2019, , 423-432.		1
183	Anisotropic, Degradable Polymer Assemblies Driven by a Rigid Hydrogen-Bonding Motif That Induce Shape-Specific Cell Responses. Macromolecules, 2022, 55, 15-25.	4.8	1
184	Small-Diameter Porous Poly (?-Caprolactone) Films Enhance Adhesion and Growth of Human Cultured Epidermal Keratinocyte and Dermal Fibroblast Cells. Tissue Engineering, 2007, .	4.6	0
185	Regulation of cancer cell adhesion on biocompatible polymer-coated surfaces. Journal of Nanomedicine & Nanotechnology, 2012, 01, .	1.1	0
186	Molecular Aggregation States of Poly (meth) acrylate Thin Films in Non-solvents. Hamon, 2013, 23, 62-65.	0.0	0
187	Development of Biocompatible Materials : Bio and Material Interactions. Seikei-Kakou, 2019, 31, 404-407.	0.0	0
188	Bio-inspired Water Structure: Intermediate Water in Hydrated Bio-polymers and Synthetic Bio-compatible Polymers. , 2020, , 243-259.		0
189	Sulfated Hyaluronan coating of polyurethanebased implant materials. Current Directions in Biomedical Engineering, 2020, 6, 446-449.	0.4	0
190	Poly(2-Methoxyethyl Acrylate) (PMEA)-Coated Anti-Platelet Adhesive Surfaces to Mimic Native Blood Vessels through HUVECs Attachment, Migration, and Monolayer Formation. Coatings, 2022, 12, 869.	2.6	0