Nicholas James Strausfeld

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2929036/publications.pdf

Version: 2024-02-01

167 papers 12,415 citations

59 h-index 101 g-index

184 all docs

184 docs citations

times ranked

184

3821 citing authors

#	Article	IF	CITATIONS
1	A Systematic Nomenclature for the Insect Brain. Neuron, 2014, 81, 755-765.	3.8	564
2	Evolution, Discovery, and Interpretations of Arthropod Mushroom Bodies. Learning and Memory, $1998, 5, 11-37$.	0.5	425
3	Subdivision of the drosophila mushroom bodies by enhancer-trap expression patterns. Neuron, 1995, 15, 45-54.	3.8	336
4	Organization of the honey bee mushroom body: Representation of the calyx within the vertical and gamma lobes. Journal of Comparative Neurology, 2002, 450, 4-33.	0.9	302
5	Deep Homology of Arthropod Central Complex and Vertebrate Basal Ganglia. Science, 2013, 340, 157-161.	6.0	290
6	The Organization of Extrinsic Neurons and Their Implications in the Functional Roles of the Mushroom Bodies in <i>Drosophila melanogaster </i>	0.5	274
7	Mushroom bodies of the cockroach: Their participation in place memory. , 1998, 402, 520-537.		269
8	Convergence of visual, haltere, and prosternai inputs at neck motor neurons of Calliphora erythrocephala. Cell and Tissue Research, 1985, 240, 601-615.	1.5	254
9	Dissection of the Peripheral Motion Channel in the Visual System of Drosophila melanogaster. Neuron, 2007, 56, 155-170.	3.8	243
10	Lobula plate and ocellar interneurons converge onto a cluster of descending neurons leading to neck and leg motor neuropil in Calliphora erythrocephala. Cell and Tissue Research, 1985, 240, 617-640.	1.5	240
11	Cobalt-coupled neurons of a giant fibre system in Diptera. Journal of Neurocytology, 1983, 12, 971-991.	1.6	220
12	The neck motor system of the flyCalliphora erythrocephala. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1987, 160, 205-224.	0.7	217
13	Descending neurons supplying the neck and flight motor of diptera: Physiological and anatomical characteristics. Journal of Comparative Neurology, 1990, 302, 973-991.	0.9	216
14	Olfactory systems: common design, uncommon origins?. Current Opinion in Neurobiology, 1999, 9, 634-639.	2.0	211
15	Descending neurons supplying the neck and flight motor of diptera: Organization and neuroanatomical relationships with visual pathways. Journal of Comparative Neurology, 1990, 302, 954-972.	0.9	200
16	Ground plan of the insect mushroom body: Functional and evolutionary implications. Journal of Comparative Neurology, 2009, 513, 265-291.	0.9	200
17	The neck motor system of the flyCalliphora erythrocephala. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1987, 160, 225-238.	0.7	195
18	Crustacean – Insect Relationships: The Use of Brain Characters to Derive Phylogeny amongst Segmented Invertebrates. Brain, Behavior and Evolution, 1998, 52, 186-206.	0.9	195

#	Article	IF	Citations
19	Physiology and morphology of projection neurons in the antennal lobe of the male mothManduca sexta. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1989, 165, 427-453.	0.7	188
20	Complex brain and optic lobes in an early Cambrian arthropod. Nature, 2012, 490, 258-261.	13.7	168
21	Morphology and sensory modality of mushroom body extrinsic neurons in the brain of the cockroach, Periplaneta americana. Journal of Comparative Neurology, 1997, 387, 631-650.	0.9	163
22	Neuronal basis for parallel visual processing in the fly. Visual Neuroscience, 1991, 7, 13-33.	0.5	150
23	The mushroom bodies ofDrosophila melanogaster: An immunocytological and golgi study of Kenyon cell organization in the calyces and lobes. Microscopy Research and Technique, 2003, 62, 151-169.	1.2	150
24	Arthropod phylogeny: onychophoran brain organization suggests an archaic relationship with a chelicerate stem lineage. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 1857-1866.	1.2	148
25	Visuo-motor pathways in arthropods. Die Naturwissenschaften, 1986, 73, 151-154.	0.6	144
26	Common design in a unique midline neuropil in the brains of arthropods. Arthropod Structure and Development, 2002, 31, 77-91.	0.8	142
27	Brain structure resolves the segmental affinity of anomalocaridid appendages. Nature, 2014, 513, 538-542.	13.7	136
28	Vision in insects: pathways possibly underlying neural adaptation and lateral inhibition. Science, 1977, 195, 894-897.	6.0	135
29	Beneath the Compound Eye: Neuroanatomical Analysis and Physiological Correlates in the Study of Insect Vision. , 1989, , 317-359.		135
30	The evolution of crustacean and insect optic lobes and the origins of chiasmata. Arthropod Structure and Development, 2005, 34, 235-256.	0.8	127
31	Chelicerate neural ground pattern in a Cambrian great appendage arthropod. Nature, 2013, 502, 364-367.	13.7	123
32	Multimodal efferent and recurrent neurons in the medial lobes of cockroach mushroom bodies., 1999, 409, 647-663.		121
33	Organization of olfactory and multimodal afferent neurons supplying the calyx and pedunculus of the cockroach mushroom bodies. Journal of Comparative Neurology, 1999, 409, 603-625.	0.9	120
34	Conserved and convergent organization in the optic lobes of insects and isopods, with reference to other crustacean taxa. Journal of Comparative Neurology, 2003, 467, 150-172.	0.9	119
35	Mushroom bodies of the cockroach: Activity and identities of neurons recorded in freely moving animals. Journal of Comparative Neurology, 1998, 402, 501-519.	0.9	115
36	Two visual systems in one brain: Neuropils serving the principal eyes of the spiderCupiennius salei. Journal of Comparative Neurology, 1993, 328, 63-75.	0.9	113

#	Article	IF	CITATIONS
37	Two visual systems in one brain: Neuropils serving the secondary eyes of the spiderCupiennius salei. Journal of Comparative Neurology, 1993, 328, 43-62.	0.9	107
38	Brain organization and the origin of insects: an assessment. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 1929-1937.	1.2	106
39	Comparison of octopamine-like immunoreactivity in the brains of the fruit fly and blow fly. Journal of Comparative Neurology, 2006, 494, 460-475.	0.9	105
40	Structure, distribution and number of surface sensilla and their receptor cells on the olfactory appendage of the male mothManduca sexta. Journal of Neurocytology, 1990, 19, 519-538.	1.6	103
41	Chapter 24 A Brain Region in Insects That Supervises Walking. Progress in Brain Research, 1999, 123, 273-284.	0.9	101
42	The organization and evolutionary implications of neuropils and their neurons in the brain of the onychophoran Euperipatoides rowelli. Arthropod Structure and Development, 2006, 35, 169-196.	0.8	98
43	Visual motion detection circuits in flies: peripheral motion computation by identified small-field retinotopic neurons. Journal of Neuroscience, 1995, 15, 5596-5611.	1.7	95
44	Octopamine-like immunoreactivity in the honey bee and cockroach: Comparable organization in the brain and subesophageal ganglion. Journal of Comparative Neurology, 2005, 488, 233-254.	0.9	94
45	Organizational principles of outputs from Dipteran brains. Journal of Insect Physiology, 1984, 30, 73-93.	0.9	92
46	Optic Glomeruli and Their Inputs in <i>Drosophila</i> Share an Organizational Ground Pattern with the Antennal Lobes. Journal of Neuroscience, 2012, 32, 6061-6071.	1.7	91
47	Visual Motion-Detection Circuits in Flies: Parallel Direction- and Non-Direction-Sensitive Pathways between the Medulla and Lobula Plate. Journal of Neuroscience, 1996, 16, 4551-4562.	1.7	90
48	The dipteran ?Giant fibre? pathway: neurons and signals. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1986, 158, 529-548.	0.7	88
49	Representation of the calyces in the medial and vertical lobes of cockroach mushroom bodies., 1999, 409, 626-646.		85
50	The functional organization of male-specific visual neurons in flies. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1991, 169, 395-411.	0.7	84
51	A new view of insect–crustacean relationships I. Inferences from neural cladistics and comparative neuroanatomy. Arthropod Structure and Development, 2011, 40, 276-288.	0.8	84
52	Synaptic connections of intrinsic cells and basket arborizations in the external plexiform layer of the fly's eye. Brain Research, 1973, 59, 119-136.	1.1	80
53	The L4 monopolar neurone: a substrate for lateral interaction in the visual system of the flymusca domestica (L). Brain Research, 1973, 59, 97-117.	1.1	79
54	Organization and significance of neurons that detect change of visual depth in the hawk mothManduca sexta. Journal of Comparative Neurology, 2000, 424, 356-376.	0.9	79

#	Article	IF	Citations
55	Genealogical Correspondence of Mushroom Bodies across Invertebrate Phyla. Current Biology, 2015, 25, 38-44.	1.8	74
56	Parallel organization in honey bee mushroom bodies by peptidergic kenyon cells. Journal of Comparative Neurology, 2000, 424, 179-195.	0.9	71
57	Organization of optic lobes that support motion detection in a semiterrestrial crab. Journal of Comparative Neurology, 2005, 493, 396-411.	0.9	69
58	Taurine-, aspartate- and glutamate-like immunoreactivity identifies chemically distinct subdivisions of Kenyon cells in the cockroach mushroom body. Journal of Comparative Neurology, 2001, 439, 352-367.	0.9	68
59	Male and female visual neurones in dipterous insects. Nature, 1980, 283, 381-383.	13.7	66
60	The relevance of neural architecture to visual performance: Phylogenetic conservation and variation in dipteran visual systems. Journal of Comparative Neurology, 1997, 383, 282-304.	0.9	66
61	Lucifer Yellow Histology. Springer Series in Experimental Entomology, 1983, , 132-155.	0.7	65
62	Arthropod eyes: The early Cambrian fossil record and divergent evolution of visual systems. Arthropod Structure and Development, 2016, 45, 152-172.	0.8	64
63	Cluster organization and response characteristics of the giant fiber pathway of the blowflyCalliphora erythrocephala. Journal of Comparative Neurology, 1990, 294, 59-75.	0.9	63
64	Visual Motion-Detection Circuits in Flies: Small-Field Retinotopic Elements Responding to Motion Are Evolutionarily Conserved across Taxa. Journal of Neuroscience, 1996, 16, 4563-4578.	1.7	63
65	Development of laminar organization in the mushroom bodies of the cockroach: Kenyon cell proliferation, outgrowth, and maturation. Journal of Comparative Neurology, 2001, 439, 331-351.	0.9	62
66	Development and morphology of Class II Kenyon cells in the mushroom bodies of the honey bee, Apis mellifera. Journal of Comparative Neurology, 2004, 474, 325-339.	0.9	60
67	Descending pathways connecting the male-specific visual system of flies to the neck and flight motor. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1991, 169, 413-26.	0.7	57
68	A unique mushroom body substructure common to basal cockroaches and to termites. Journal of Comparative Neurology, 2003, 456, 305-320.	0.9	56
69	Visual system of calliphorid flies: Organization of optic glomeruli and their lobula complex efferents. Journal of Comparative Neurology, 2007, 500, 166-188.	0.9	55
70	Flybrain, an on-line atlas and database of the Drosophila nervous system. Neuron, 1995, 15, 17-20.	3.8	54
71	Structural organization of male-specific visual neurons in calliphorid optic lobes. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1991, 169, 379-93.	0.7	53
72	Oculomotor control in calliphorid flies: Organization of descending neurons to neck motor neurons responding to visual stimuli. Journal of Comparative Neurology, 1995, 361, 267-284.	0.9	53

#	Article	IF	Citations
73	Neuronal organization of the hemiellipsoid body of the land hermit crab, <i>Coenobita clypeatus</i> Correspondence with the mushroom body ground pattern. Journal of Comparative Neurology, 2012, 520, 2824-2846.	0.9	52
74	Evolutionarily conserved mechanisms for the selection and maintenance of behavioural activity. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20150053.	1.8	52
75	Anatomical organization of retinotopic motion-sensitive pathways in the optic lobes of flies. Microscopy Research and Technique, 2003, 62, 132-150.	1.2	51
76	Preservational Pathways of Corresponding Brains of a Cambrian Euarthropod. Current Biology, 2015, 25, 2969-2975.	1.8	51
77	Exploitation of an Ancient Escape Circuit by an Avian Predator: Prey Sensitivity to Model Predator Display in the Field. Brain, Behavior and Evolution, 2000, 56, 94-106.	0.9	50
78	Chemical neuroanatomy of the fly's movement detection pathway. Journal of Comparative Neurology, 2004, 468, 6-23.	0.9	50
79	Dynamics of glutamatergic signaling in the mushroom body of young adult Drosophila. Neural Development, 2010, 5, 10.	1.1	50
80	The compound eye of the fly (Musca domestica): connections between the cartridges of the lamina ganglionaris. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1970, 70, 95-104.	0.7	48
81	Exploitation of an Ancient Escape Circuit by an Avian Predator: Relationships between Taxon-Specific Prey Escape Circuits and the Sensitivity to Visual Cues from the Predator. Brain, Behavior and Evolution, 2001, 58, 218-240.	0.9	46
82	Organization of local interneurons in optic glomeruli of the dipterous visual system and comparisons with the antennal lobes. Developmental Neurobiology, 2007, 67, 1267-1288.	1.5	46
83	Genealogical correspondence of a forebrain centre implies an executive brain in the protostome–deuterostome bilaterian ancestor. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150055.	1.8	45
84	An insect-like mushroom body in a crustacean brain. ELife, 2017, 6, .	2.8	43
85	Oculomotor control in calliphorid flies: Head movements during activation and inhibition of neck motor neurons corroborate neuroanatomical predictions. Journal of Comparative Neurology, 1995, 361, 285-297.	0.9	42
86	Organization of Kenyon cells in subdivisions of the mushroom bodies of a lepidopteran insect. Journal of Comparative Neurology, 2005, 491, 290-304.	0.9	40
87	Visual inputs to the mushroom body calyces of the whirligig beetle <i>Dineutus sublineatus</i> Modality switching in an insect. Journal of Comparative Neurology, 2012, 520, 2562-2574.	0.9	39
88	An exceptionally preserved arthropod cardiovascular system from the early Cambrian. Nature Communications, 2014, 5, 3560.	5.8	39
89	Premotor descending neurons responding selectively to local visual stimuli in flies. Journal of Comparative Neurology, 1992, 316, 87-103.	0.9	38
90	Oculomotor control in calliphorid flies: GABAergic organization in heterolateral inhibitory pathways. Journal of Comparative Neurology, 1995, 361, 298-320.	0.9	38

#	Article	IF	CITATIONS
91	Neural organization of first optic neuropils in the littoral crab <i>Hemigrapsus oregonensis</i> and the semiterrestrial species <i>Chasmagnathus granulatus</i> Journal of Comparative Neurology, 2009, 513, 129-150.	0.9	38
92	The minute brain of the copepod <i>Tigriopus californicus</i> supports a complex ancestral ground pattern of the tetraconate cerebral nervous systems. Journal of Comparative Neurology, 2012, 520, 3446-3470.	0.9	38
93	Fossils and the Evolution of the Arthropod Brain. Current Biology, 2016, 26, R989-R1000.	1.8	38
94	Cobalt-immunocytochemical identification of peptidergic neurons inCalliphora innervating central and peripheral targets. Journal of Neurocytology, 1983, 12, 847-861.	1.6	37
95	Unlocking the early fossil record of the arthropod central nervous system. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20150038.	1.8	37
96	The computational basis of an identified neuronal circuit for elementary motion detection in dipterous insects. Visual Neuroscience, 2004, 21, 567-586.	0.5	36
97	Visual inputs to the mushroom body calyces of the whirligig beetle Dineutus sublineatus: Modality switching in an insect. Journal of Comparative Neurology, 2012, 520, Spc1-Spc1.	0.9	36
98	Organization of olfactory and multimodal afferent neurons supplying the calyx and pedunculus of the cockroach mushroom bodies. Journal of Comparative Neurology, 1999, 409, 603-25.	0.9	34
99	Insect-Like Organization of the Stomatopod Central Complex: Functional and Phylogenetic Implications. Frontiers in Behavioral Neuroscience, 2017, 11, 12.	1.0	33
100	Functionally and anatomically segregated visual pathways in the lobula complex of a calliphorid fly. Journal of Comparative Neurology, 1998, 396, 84-104.	0.9	31
101	Spatial learning in the restrained American cockroach Periplaneta americana. Journal of Experimental Biology, 2004, 207, 377-383.	0.8	31
102	Visual system of calliphorid flies: Motion- and orientation-sensitive visual interneurons supplying dorsal optic glomeruli. Journal of Comparative Neurology, 2007, 500, 189-208.	0.9	31
103	Homology versus Convergence in Resolving Transphyletic Correspondences of Brain Organization. Brain, Behavior and Evolution, 2013, 82, 215-219.	0.9	31
104	Functional division of intrinsic neurons in the mushroom bodies of male Spodoptera littoralis revealed by antibodies against aspartate, taurine, FMRF-amide, Mas-allatotropin and DCO. Arthropod Structure and Development, 2006, 35, 153-168.	0.8	30
105	Mushroom body evolution demonstrates homology and divergence across Pancrustacea. ELife, 2020, 9, .	2.8	30
106	Small-field neurons associated with oculomotor and optomotor control in muscoid flies: Functional organization. Journal of Comparative Neurology, 1992, 316, 72-86.	0.9	29
107	Representation of the brain's superior protocerebrum of the flesh fly, <i>Neobellieria bullata</i> , in the central body. Journal of Comparative Neurology, 2012, 520, 3070-3087.	0.9	29
108	Retinotopic pathways providing motion-selective information to the lobula from peripheral elementary motion-detecting circuits. Journal of Comparative Neurology, 2003, 457, 326-344.	0.9	28

#	Article	IF	Citations
109	Responses of <i>Drosophila </i> i>giant descending neurons to visual and mechanical stimuli. Journal of Experimental Biology, 2014, 217, 2121-9.	0.8	28
110	A simple mushroom body in an African scarabid beetle. Journal of Comparative Neurology, 2004, 478, 219-232.	0.9	27
111	A Toll-receptor map underlies structural brain plasticity. ELife, 2020, 9, .	2.8	27
112	Small-field neurons associated with oculomotor control in muscoid flies: Cellular organization in the lobula plate. Journal of Comparative Neurology, 1992, 316, 56-71.	0.9	23
113	The effect of age on a visual learning task in the American cockroach. Learning and Memory, 2009, 16, 210-223.	0.5	23
114	The larval nervous system of the penis worm <i>Priapulus caudatus</i> (Ecdysozoa). Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150050.	1.8	23
115	Memory consolidation and gene expression in Periplaneta americana. Learning and Memory, 2005, 12, 30-38.	0.5	22
116	Learning with half a brain. Developmental Neurobiology, 2007, 67, 740-751.	1.5	22
117	Parallel organization in honey bee mushroom bodies by peptidergic Kenyon cells. Journal of Comparative Neurology, 2000, 424, 179-95.	0.9	22
118	Intersegmental sensory tracts and contralateral motor neurons in the leg ganglia of the spider Cupiennius salei Keys. Cell and Tissue Research, 1985, 241, 53-57.	1.5	21
119	Ancestral regulatory mechanisms specify conserved midbrain circuitry in arthropods and vertebrates. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 19544-19555.	3.3	21
120	Waptia revisited: Intimations of behaviors. Arthropod Structure and Development, 2016, 45, 173-184.	0.8	20
121	Resolution of complex neuronal arrangements in the blowfly visual system using triple fluorescence staining. Cell and Tissue Research, 1987, 247, 5-10.	1.5	18
122	Neural organization of afferent pathways from the stomatopod compound eye. Journal of Comparative Neurology, 2017, 525, 3010-3030.	0.9	18
123	Dimorphic Olfactory Lobes in the Arthropoda. Annals of the New York Academy of Sciences, 2009, 1170, 487-496.	1.8	16
124	Central projections of antennular chemosensory and mechanosensory afferents in the brain of the terrestrial hermit crab (Coenobita clypeatus; Coenobitidae, Anomura). Frontiers in Neuroanatomy, 2015, 9, 94.	0.9	16
125	Insect Vision and Olfaction: Common Design Principles of Neuronal Organization. , 1989, , 319-353.		16
126	Mushroom bodies in crustaceans: Insectâ€like organization in the caridid shrimp ⟨i⟩Lebbeus groenlandicus⟨/i⟩. Journal of Comparative Neurology, 2019, 527, 2371-2387.	0.9	15

#	Article	IF	CITATIONS
127	Leanchoiliidae reveals the ancestral organization of the stem euarthropod brain. Current Biology, 2021, 31, 4397-4404.e2.	1.8	13
128	Cytology of cobalt-filled neurons in flies: cobalt deposits at presynaptic and postsynaptic sites, mitochondria and the cytoskeleton. Journal of Neurocytology, 1983, 12, 949-970.	1.6	12
129	Sign-conserving amacrine neurons in the fly's external plexiform layer. Visual Neuroscience, 2005, 22, 345-358.	0.5	12
130	Mushroom bodies in Reptantia reflect a major transition in crustacean brain evolution. Journal of Comparative Neurology, 2020, 528, 261-282.	0.9	12
131	A precocious adult visual center in the larva defines the unique optic lobe of the split-eyed whirligig beetle Dineutus sublineatus. Frontiers in Zoology, 2013, 10, 7.	0.9	11
132	Global and local modulatory supply to the mushroom bodies of the moth Spodoptera littoralis. Arthropod Structure and Development, 2008, 37, 260-272.	0.8	10
133	Representation of the stomatopod's retinal midband in the optic lobes: Putative neural substrates for integrating chromatic, achromatic and polarization information. Journal of Comparative Neurology, 2018, 526, 1148-1165.	0.9	10
134	Introduction to †Homology and convergence in nervous system evolution'. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150034.	1.8	9
135	The reniform body: An integrative lateral protocerebral neuropil complex of Eumalacostraca identified in Stomatopoda and Brachyura. Journal of Comparative Neurology, 2020, 528, 1079-1094.	0.9	9
136	Convergent evolution of optic lobe neuropil in Pancrustacea. Arthropod Structure and Development, 2021, 61, 101040.	0.8	9
137	A pair of descending neurons with dendrites in the optic lobes projecting directly to thoracic ganglia of dipterous insects. Cell and Tissue Research, 1982, 226, 355-62.	1.5	8
138	Brain Homology: Dohrn of a New Era?. Brain, Behavior and Evolution, 2010, 76, 165-167.	0.9	8
139	Introduction to †Origin and evolution of the nervous system'. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20150033.	1.8	8
140	<i>Nomen est omen</i> , cognitive dissonance, and homology of memory centers in crustaceans and insects. Journal of Comparative Neurology, 2020, 528, 2595-2601.	0.9	8
141	The lobula plate is exclusive to insects. Arthropod Structure and Development, 2021, 61, 101031.	0.8	8
142	The Insect Brain: A COMMENTATED PRIMER. , 2015, , 597-639.		8
143	Development-dependent and -independent ubiquitin expression in divisions of the cockroach mushroom body. Journal of Comparative Neurology, 2006, 496, 556-571.	0.9	7
144	Cong et al. reply. Nature, 2014, 516, E3-E4.	13.7	7

#	Article	IF	CITATIONS
145	Optic flow representation in the optic lobes of Diptera: modeling the role of T5 directional tuning properties. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2000, 186, 783-797.	0.7	6
146	Optic flow representation in the optic lobes of Diptera: modeling innervation matrices onto collators and their evolutionary implications. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2000, 186, 799-811.	0.7	6
147	Shore crabs reveal novel evolutionary attributes of the mushroom body. ELife, 2021, 10, .	2.8	6
148	Morphology and sensory modality of mushroom body extrinsic neurons in the brain of the cockroach, Periplaneta americana., 1997, 387, 631.		6
149	Johann Flögel (1834–1918) and the birth of comparative insect neuroanatomy and brain nomenclature. Arthropod Structure and Development, 2008, 37, 434-441.	0.8	5
150	Biological Networks across Scalesâ€"The Theoretical and Empirical Foundations for Time-Varying Complex Networks that Connect Structure and Function across Levels of Biological Organization. Integrative and Comparative Biology, 2022, 61, 1991-2010.	0.9	5
151	Diverse speed response properties of motion sensitive neurons in the fly's optic lobe. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2007, 193, 233-247.	0.7	4
152	The Divergent Evolution of Arthropod Brains. , 0, , 31-70.		4
153	Pathways in Dipteran Insects for Early Visual Motion Processing. , 2001, , 68-82.		4
154	Erratum. Journal of Comparative Neurology, 2000, 428, 760-760.	0.9	3
155	A letter from the Editors. Arthropod Structure and Development, 2009, 38, 1.	0.8	3
156	Palaeontology: Clearing the Heads of Cambrian Arthropods. Current Biology, 2015, 25, R616-R618.	1.8	3
157	Multiple spectral channels in branchiopods. I. Vision in dim light and neural correlates. Journal of Experimental Biology, 2018, 221, .	0.8	3
158	Mushroom bodies and reniform bodies coexisting in crabs cannot both be homologs of the insect mushroom body. Journal of Comparative Neurology, 2021, 529, 3265-3271.	0.9	3
159	Brain and Optic Lobes. , 2009, , 121-130.		2
160	The Head-Neck System of the Blowfly Calliphora: 1. Anatomic Organization of Neck Muscles, Motoneurons, and Multimodal and Visual Inputs. , 1992, , 56-63.		2
161	Editorial. Arthropod Structure and Development, 2017, 46, 1.	0.8	1
162	Editorial. Arthropod Structure and Development, 2018, 47, 1.	0.8	1

#	Article	IF	CITATIONS
163	A comment from the editors. Arthropod Structure and Development, 2003, 32, 1.	0.8	0
164	Earlier Days. Journal of Neurogenetics, 2009, 23, 11-14.	0.6	0
165	Preface. Arthropod Structure and Development, 2010, 39, 71.	0.8	0
166	A letter from the Editors. Arthropod Structure and Development, 2011, 40, 1.	0.8	0
167	A letter from the Editors. Arthropod Structure and Development, 2014, 43, 1.	0.8	0