David W Pfennig

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2928722/publications.pdf

Version: 2024-02-01

130 papers 9,598 citations

52 h-index 92 g-index

150 all docs

150 docs citations

150 times ranked 7484 citing authors

#	Article	IF	Citations
1	Evolution and the Flexible Organism. American Scientist, 2022, 110, 94.	0.1	O
2	Microevolutionary change in mimicry? Potential erosion of rattling behaviour among nonvenomous snakes on islands lacking rattlesnakes. Ethology Ecology and Evolution, 2021, 33, 125-136.	0.6	3
3	A condition-dependent male sexual signal predicts adaptive predator-induced plasticity in offspring. Behavioral Ecology and Sociobiology, 2021, 75, 1.	0.6	8
4	Evolutionary rescue via transgenerational plasticity: Evidence and implications for conservation. Evolution & Development, 2021, 23, 292-307.	1.1	13
5	Adaptive Plasticity as a Fitness Benefit of Mate Choice. Trends in Ecology and Evolution, 2021, 36, 294-307.	4.2	3
6	Innovation and Diversification Via Plasticity-Led Evolution., 2021,, 211-240.		14
7	Transcriptomic bases of a polyphenism. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2021, 336, 482-495.	0.6	3
8	Plasticityâ€led evolution: A survey of developmental mechanisms and empirical tests. Evolution & Development, 2020, 22, 71-87.	1.1	46
9	An experimental investigation of how intraspecific competition and phenotypic plasticity can promote the evolution of novel, complex phenotypes. Biological Journal of the Linnean Society, 2020, 131, 76-87.	0.7	9
10	Identification of candidate loci for adaptive phenotypic plasticity in natural populations of spadefoot toads. Ecology and Evolution, 2020, 10, 8976-8988.	0.8	6
11	Character displacement. Current Biology, 2020, 30, R1023-R1024.	1.8	4
12	Carryover effects and the evolution of polyphenism. Biological Journal of the Linnean Society, 2020, 131, 622-631.	0.7	8
13	Dead Spadefoot Tadpoles Adaptively Modify Development in Future Generations: A Novel Form of Nongenetic Inheritance?. Copeia, 2020, 108, 116.	1.4	4
14	Phenotypic plasticity and the origins of novelty. , 2020, , 443-458.		1
15	Evolution: Ancestral Plasticity Promoted Extreme Temperature Adaptation in Thermophilic Bacteria. Current Biology, 2020, 30, R68-R70.	1.8	3
16	Multiple models generate a geographical mosaic of resemblance in a Batesian mimicry complex. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20191519.	1.2	4
17	Male sexual signal predicts phenotypic plasticity in offspring: implications for the evolution of plasticity and local adaptation. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180179.	1.8	15
18	Plasticity-led evolution: evaluating the key prediction of frequency-dependent adaptation. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182754.	1.2	33

#	Article	IF	CITATIONS
19	How stabilizing selection and nongenetic inheritance combine to shape the evolution of phenotypic plasticity. Journal of Evolutionary Biology, 2019, 32, 706-716.	0.8	10
20	Genome of i>Spea multiplicata / i>, a Rapidly Developing, Phenotypically Plastic, and Desert-Adapted Spadefoot Toad. G3: Genes, Genomes, Genetics, 2019, 9, 3909-3919.	0.8	23
21	Phenotypic plasticity, canalization, and the origins of novelty: Evidence and mechanisms from amphibians. Seminars in Cell and Developmental Biology, 2019, 88, 80-90.	2.3	56
22	Evaluating the utility of camera traps in field studies of predation. PeerJ, 2019, 7, e6487.	0.9	19
23	Morphological novelty emerges from pre-existing phenotypic plasticity. Nature Ecology and Evolution, 2018, 2, 1289-1297.	3.4	96
24	Coevolutionary arms races in Batesian mimicry? A test of the chase-away hypothesis. Biological Journal of the Linnean Society, 2018, 124, 668-676.	0.7	13
25	The emergence of performance tradeâ€offs during local adaptation: insights from experimental evolution. Molecular Ecology, 2017, 26, 1720-1733.	2.0	99
26	Intraspecific adaptive radiation: Competition, ecological opportunity, and phenotypic diversification within species. Evolution; International Journal of Organic Evolution, 2017, 71, 2496-2509.	1.1	24
27	To mimicry and back again. Nature, 2016, 534, 184-185.	13.7	7
28	Evaluating â€~Plasticity-First' Evolution in Nature: Key Criteria and Empirical Approaches. Trends in Ecology and Evolution, 2016, 31, 563-574.	4.2	364
29	Behavioral Plasticity and the Origins of Novelty: The Evolution of the Rattlesnake Rattle. American Naturalist, 2016, 188, 475-483.	1.0	23
30	Genetic assimilation: a review of its potential proximate causes and evolutionary consequences. Annals of Botany, 2016, 117, 769-779.	1.4	145
31	An inducible offense: carnivore morph tadpoles induced by tadpole carnivory. Ecology and Evolution, 2015, 5, 1405-1411.	0.8	30
32	Evolutionary rescue and the coexistence of generalist and specialist competitors: an experimental test. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20151932.	1.2	24
33	Constraints on the evolution of phenotypic plasticity: limits and costs of phenotype and plasticity. Heredity, 2015, 115, 293-301.	1.2	469
34	Batesian mimicry promotes pre- and postmating isolation in a snake mimicry complex. Evolution; International Journal of Organic Evolution, 2015, 69, 1085-1090.	1,1	11
35	Sexual selection's impacts on ecological specialization: an experimental test. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150217.	1.2	2
36	More than mimicry? Evaluating scope for flicker-fusion as a defensive strategy in coral snake mimics. Environmental Epigenetics, 2014, 60, 123-130.	0.9	26

#	Article	IF	CITATIONS
37	Cryptic Genetic Variation in Natural Populations: A Predictive Framework. Integrative and Comparative Biology, 2014, 54, 783-793.	0.9	60
38	Towards a gene regulatory network perspective on phenotypic plasticity, genetic accommodation and genetic assimilation. Molecular Ecology, 2014, 23, 4438-4440.	2.0	47
39	Evolutionary Change in Continuous Reaction Norms. American Naturalist, 2014, 183, 453-467.	1.0	114
40	Mimicry's palette: widespread use of conserved pigments in the aposematic signals of snakes. Evolution & Development, 2014, 16, 61-67.	1.1	16
41	Brotherly love benefits females. Nature, 2014, 505, 626-627.	13.7	4
42	Rapid evolution of mimicry following local model extinction. Biology Letters, 2014, 10, 20140304.	1.0	22
43	The role of transgenerational epigenetic inheritance in diversification and speciation. Non-Genetic Inheritance, 2013, 1 , .	0.8	20
44	Imperfect Mimicry and the Limits of Natural Selection. Quarterly Review of Biology, 2013, 88, 297-315.	0.0	117
45	Competition and the origins of novelty: experimental evolution of niche-width expansion in a virus. Biology Letters, 2013, 9, 20120616.	1.0	62
46	Inducible competitors and adaptive diversification. Environmental Epigenetics, 2013, 59, 537-552.	0.9	12
47	Inviable immigrants drive diversification in the sea. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3713-3714.	3.3	13
48	Life imperfectly imitates life. Nature, 2012, 483, 410-411.	13.7	2
49	A Batesian mimic and its model share color production mechanisms. Environmental Epigenetics, 2012, 58, 658-667.	0.9	27
50	Competition and the evolution of imperfect mimicry. Environmental Epigenetics, 2012, 58, 608-619.	0.9	23
51	Increased competition as a cost of specialization during the evolution of resource polymorphism. Biological Journal of the Linnean Society, 2012, 107, 845-853.	0.7	24
52	Widespread disruptive selection in the wild is associated with intense resource competition. BMC Evolutionary Biology, 2012, 12, 136.	3.2	24
53	Antipredator Behavior Promotes Diversification of Feeding Strategies. Integrative and Comparative Biology, 2012, 52, 53-63.	0.9	8
54	Relaxed Genetic Constraint is Ancestral to the Evolution of Phenotypic Plasticity. Integrative and Comparative Biology, 2012, 52, 16-30.	0.9	46

#	Article	lF	Citations
55	Development and evolution of character displacement. Annals of the New York Academy of Sciences, 2012, 1256, 89-107.	1.8	32
56	Emerging model systems in eco-evo-devo: the environmentally responsive spadefoot toad. Evolution & Development, 2011, 13, 391-400.	1.1	50
57	DARWIN IN THE TWENTY-FIRST CENTURY1. Evolution; International Journal of Organic Evolution, 2011, 65, 2130-2132.	1.1	0
58	EVALUATING THE TARGETS OF SELECTION DURING CHARACTER DISPLACEMENT. Evolution; International Journal of Organic Evolution, 2011, 65, 2946-2958.	1.1	22
59	Inclusive fitness theory and eusociality. Nature, 2011, 471, E1-E4.	13.7	339
60	The role of developmental plasticity in evolutionary innovation. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 2705-2713.	1.2	432
61	EVOLUTION OF CHARACTER DISPLACEMENT IN SPADEFOOT TOADS: DIFFERENT PROXIMATE MECHANISMS IN DIFFERENT SPECIES. Evolution; International Journal of Organic Evolution, 2010, 64, no-no.	1.1	23
62	Does character displacement initiate speciation? Evidence of reduced gene flow between populations experiencing divergent selection. Journal of Evolutionary Biology, 2010, 23, 854-865.	0.8	44
63	Stress hormones and the fitness consequences associated with the transition to a novel diet in larval amphibians. Journal of Experimental Biology, 2010, 213, 2547-2547.	0.8	1
64	Resource polyphenism increases species richness: a test of the hypothesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 577-591.	1.8	84
65	Diet and hormonal manipulation reveal cryptic genetic variation: implications for the evolution of novel feeding strategies. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 3569-3578.	1.2	84
66	High-model abundance may permit the gradual evolution of Batesian mimicry: an experimental test. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 1041-1048.	1.2	56
67	Mimics without models: causes and consequences of allopatry in Batesian mimicry complexes. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 2577-2585.	1.2	59
68	Predator Cognition Permits Imperfect Coral Snake Mimicry. American Naturalist, 2010, 176, 830-834.	1.0	95
69	Phenotypic plasticity's impacts on diversification and speciation. Trends in Ecology and Evolution, 2010, 25, 459-467.	4.2	961
70	Character Displacement and the Origins of Diversity. American Naturalist, 2010, 176, S26-S44.	1.0	157
71	Maternal Investment Influences Expression of Resource Polymorphism in Amphibians: Implications for the Evolution of Novel Resource-Use Phenotypes. PLoS ONE, 2010, 5, e9117.	1.1	38
72	I.14 Phenotypic Selection. , 2009, , 101-108.		2

#	Article	IF	Citations
73	Stress hormones and the fitness consequences associated with the transition to a novel diet in larval amphibians. Journal of Experimental Biology, 2009, 212, 3743-3750.	0.8	33
74	A MATERNAL EFFECT MEDIATES RAPID POPULATION DIVERGENCE AND CHARACTER DISPLACEMENT IN SPADEFOOT TOADS. Evolution; International Journal of Organic Evolution, 2009, 63, 898-909.	1.1	55
75	Disruptive Selection in Natural Populations: The Roles of Ecological Specialization and Resource Competition. American Naturalist, 2009, 174, 268-281.	1.0	92
76	Parallel evolution and ecological selection: replicated character displacement in spadefoot toads. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 4189-4196.	1.2	25
77	Character Displacement: Ecological And Reproductive Responses To A Common Evolutionary Problem. Quarterly Review of Biology, 2009, 84, 253-276.	0.0	355
78	Selection overrides gene flow to break down maladaptive mimicry. Nature, 2008, 451, 1103-1106.	13.7	55
79	Ancestral variation and the potential for genetic accommodation in larval amphibians: implications for the evolution of novel feeding strategies. Evolution & Development, 2008, 10, 316-325.	1.1	82
80	Analysis of range expansion in two species undergoing character displacement: why might invaders generally â€~win' during character displacement?. Journal of Evolutionary Biology, 2008, 21, 696-704.	0.8	28
81	Mimicry on the edge: why do mimics vary in resemblance to their model in different parts of their geographical range?. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 1955-1961.	1.2	83
82	Patterns and Power of Phenotypic Selection in Nature. BioScience, 2007, 57, 561-572.	2.2	209
83	Character displacement: in situ evolution of novel phenotypes or sorting of pre-existing variation?. Journal of Evolutionary Biology, 2007, 20, 448-459.	0.8	45
84	FIELD AND EXPERIMENTAL EVIDENCE FOR COMPETITION'S ROLE IN PHENOTYPIC DIVERGENCE. Evolution; International Journal of Organic Evolution, 2007, 61, 257-271.	1.1	101
85	AN EXPERIMENTAL TEST OF CHARACTER DISPLACEMENT'S ROLE IN PROMOTING POSTMATING ISOLATION BETWEEN CONSPECIFIC POPULATIONS IN CONTRASTING COMPETITIVE ENVIRONMENTS. Evolution; International Journal of Organic Evolution, 2007, 61, 2433-2443.	1.1	31
86	Population differences in predation on Batesian mimics in allopatry with their model: selection against mimics is strongest when they are common. Behavioral Ecology and Sociobiology, 2007, 61, 505-511.	0.6	59
87	ECOLOGICAL OPPORTUNITY AND PHENOTYPIC PLASTICITY INTERACT TO PROMOTE CHARACTER DISPLACEMENT AND SPECIES COEXISTENCE. Ecology, 2006, 87, 769-779.	1.5	109
88	CHARACTER DISPLACEMENT AS THE "BEST OF A BAD SITUATION": FITNESS TRADE-OFFS RESULTING FROM SELECTION TO MINIMIZE RESOURCE AND MATE COMPETITION. Evolution; International Journal of Organic Evolution, 2005, 59, 2200-2208.	1.1	65
89	CHARACTER DISPLACEMENT AS THE â€∞BEST OF A BAD SITUATION― FITNESS TRADE-OFFS RESULTING FROM SELECTION TO MINIMIZE RESOURCE AND MATE COMPETITION. Evolution; International Journal of Organic Evolution, 2005, 59, 2200.	1.1	19
90	Character displacement as the "best of a bad situation": fitness trade-offs resulting from selection to minimize resource and mate competition. Evolution; International Journal of Organic Evolution, 2005, 59, 2200-8.	1.1	60

#	Article	IF	Citations
91	INDIVIDUAL-LEVEL SELECTION AS A CAUSE OF COPE'S RULE OF PHYLETIC SIZE INCREASE. Evolution; International Journal of Organic Evolution, 2004, 58, 1608-1612.	1.1	286
92	Genetic details, optimization and phage life histories. Trends in Ecology and Evolution, 2004, 19, 76-82.	4.2	71
93	Genetic biases for showy males: Are some genetic systems especially conducive to sexual selection?. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 1089-1094.	3.3	154
94	A TEST OF ALTERNATIVE HYPOTHESES FOR CHARACTER DIVERGENCE BETWEEN COEXISTING SPECIES. Ecology, 2003, 84, 1288-1297.	1.5	61
95	HOW FLUCTUATING COMPETITION AND PHENOTYPIC PLASTICITY MEDIATE SPECIES DIVERGENCE. Evolution; International Journal of Organic Evolution, 2002, 56, 1217.	1.1	10
96	Migration, local adaptation and the evolution of plasticity. Trends in Ecology and Evolution, 2002, 17, 540-541.	4.2	55
97	HOW FLUCTUATING COMPETITION AND PHENOTYPIC PLASTICITY MEDIATE SPECIES DIVERGENCE. Evolution; International Journal of Organic Evolution, 2002, 56, 1217-1228.	1.1	130
98	Frequency-dependent Batesian mimicry. Nature, 2001, 410, 323-323.	13.7	198
99	Effect of Predatorâ€Prey Phylogenetic Similarity on the Fitness Consequences of Predation: A Tradeâ€off between Nutrition and Disease?. American Naturalist, 2000, 155, 335-345.	1.0	74
100	CHARACTER DISPLACEMENT IN POLYPHENIC TADPOLES. Evolution; International Journal of Organic Evolution, 2000, 54, 1738-1749.	1.1	122
101	Egg-dumping lace bugs preferentially oviposit with kin. Animal Behaviour, 2000, 59, 379-383.	0.8	26
102	CHARACTER DISPLACEMENT IN POLYPHENIC TADPOLES. Evolution; International Journal of Organic Evolution, 2000, 54, 1738.	1.1	10
103	PROXIMATE CAUSES OF CANNIBALISTIC POLYPHENISM IN LARVAL TIGER SALAMANDERS. Ecology, 1999, 80, 1076-1080.	1.5	56
104	Cannibalistic tadpoles that pose the greatest threat to kin are most likely to discriminate kin. Proceedings of the Royal Society B: Biological Sciences, 1999, 266, 57-61.	1.2	75
105	A test of alternative hypotheses for kin recognition in cannibalistic tiger salamanders. Behavioral Ecology, 1999, 10, 436-443.	1.0	47
106	The Evolution of Selflessness and Selfishness Survival Strategies: Cooperation and Conflict in Animal Societies Raghavendra Gadagkar. BioScience, 1998, 48, 956-958.	2.2	0
107	KINâ€MEDIATED MORPHOGENESIS IN FACULTATIVELY CANNIBALISTIC TADPOLES. Evolution; International Journal of Organic Evolution, 1997, 51, 1993-1999.	1.1	39
108	Kin-Mediated Morphogenesis in Facultatively Cannibalistic Tadpoles. Evolution; International Journal of Organic Evolution, 1997, 51, 1993.	1.1	19

#	Article	IF	Citations
109	Kinship and Cannibalism. BioScience, 1997, 47, 667-675.	2.2	128
110	Kin Recognition. Scientific American, 1995, 272, 98-103.	1.0	64
111	Absence of joint nesting advantage in desert seed harvester ants: evidence from a field experiment. Animal Behaviour, 1995, 49, 567-575.	0.8	18
112	Kin recognition and cannibalism in polyphenic salamanders. Behavioral Ecology, 1994, 5, 225-232.	1.0	92
113	Elgar, M. A. and Crespi, B. J. (eds.) 1992. Cannibalism. Ecology and evolution among diverse taxa. Oxford University Press, Oxford, viii + 361 pp., illus. \$75.00 (cloth), ISBN: 9-854-4650-4 Journal of Evolutionary Biology, 1994, 7, 121-123.	0.8	O
114	Kinship affects morphogenesis in cannibalistic salamanders. Nature, 1993, 362, 836-838.	13.7	111
115	Kin recognition and cannibalism in spadefoot toad tadpoles. Animal Behaviour, 1993, 46, 87-94.	0.8	170
116	POLYPHENISM IN SPADEFOOT TOAD TADPOLES AS A LOCALLY ADJUSTED EVOLUTIONARILY STABLE STRATEGY. Evolution; International Journal of Organic Evolution, 1992, 46, 1408-1420.	1.1	203
117	Polyphenism in Spadefoot Toad Tadpoles as a Logically Adjusted Evolutionarily Stable Strategy. Evolution; International Journal of Organic Evolution, 1992, 46, 1408.	1.1	149
118	K. G. Ross and R. W. Matthews (eds) 1991: "The Social Biology of Wasps" Cornell University Press, Ithaca, New York, xvii, 678 pp., illus. \$72.50 (cloth); \$34.95 (paper) ISBN: 0-8014-9906-2 Journal of Evolutionary Biology, 1992, 5, 729-731.	0.8	0
119	Pathogens as a factor limiting the spread of cannibalism in tiger salamanders. Oecologia, 1991, 88, 161-166.	0.9	95
120	Environmental Causes of Correlations between Age and Size at Metamorphosis in Scaphiopus Multiplicatus. Ecology, 1991, 72, 2240-2248.	1.5	92
121	"KIN RECOGNITION―AMONG SPADEFOOT TOAD TADPOLES: A SIDEâ€EFFECT OF HABITAT SELECTION?. Evolution; International Journal of Organic Evolution, 1990, 44, 785-798.	1.1	61
122	The adaptive significance of an environmentally-cued developmental switch in an anuran tadpole. Oecologia, 1990, 85, 101-107.	0.9	203
123	Nestmate and nest discrimination among workers from neighboring colonies of social wasps Polistes exclamans. Canadian Journal of Zoology, 1990, 68, 268-271.	0.4	15
124	"Kin Recognition" Among Spadefoot Toad Tadpoles: A Side-Effect of Habitat Selection?. Evolution; International Journal of Organic Evolution, 1990, 44, 785.	1.1	51
125	Neighbor Recognition and Contextâ€dependent Aggression in a Solitary Wasp, <i>Sphecius speciosus</i> (Hymenoptera: Sphecidae). Ethology, 1989, 80, 1-18.	0.5	42

Dominance as a Predictor of Cofoundress Disappearance Order in Social Wasps (<i>Polistes) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 62 To 0.2

#	Article	IF	CITATIONS
127	Inbreeding and reproductive performance in Standardbred horses. Journal of Heredity, 1984, 75, 220-224.	1.0	39
128	The mechanism of nestmate discrimination in social wasps (Polistes, Hymenoptera: Vespidae). Behavioral Ecology and Sociobiology, 1983, 13, 299-305.	0.6	110
129	Learned component of nestmate discrimination in workers of a social wasp, Polistes fuscatus (Hymenoptera: Vespidae). Animal Behaviour, 1983, 31, 412-416.	0.8	63
130	Field and experimental evidence that competition and ecological opportunity promote resource polymorphism. Biological Journal of the Linnean Society, 0, 100, 73-88.	0.7	54