Michal Borkovec

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2928697/publications.pdf Version: 2024-02-01

		17405	11899
219	19,540	63	134
papers	citations	h-index	g-index
223	223	223	13990
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Reaction-rate theory: fifty years after Kramers. Reviews of Modern Physics, 1990, 62, 251-341.	16.4	5,326
2	Ion binding to natural organic matter: competition, heterogeneity, stoichiometry and thermodynamic consistency. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 151, 147-166.	2.3	708
3	Mobile Subsurface Colloids and Their Role in Contaminant Transport. Advances in Agronomy, 1999, 66, 121-193.	2.4	531
4	Coagulation Rate Measurements of Colloidal Particles by Simultaneous Static and Dynamic Light Scattering. Langmuir, 1996, 12, 5541-5549.	1.6	394
5	Classical and modern methods in reaction rate theory. The Journal of Physical Chemistry, 1988, 92, 3711-3725.	2.9	377
6	Aggregation and Charging of Colloidal Silica Particles:Â Effect of Particle Size. Langmuir, 2005, 21, 5761-5769.	1.6	352
7	Colloid-Facilitated Transport of Strongly Sorbing Contaminants in Natural Porous Media:Â A Laboratory Column Study. Environmental Science & Technology, 1996, 30, 3118-3123.	4.6	305
8	Microscopic Protonation Equilibria of Poly(amidoamine) Dendrimers from Macroscopic Titrations. Macromolecules, 2003, 36, 4201-4207.	2.2	305
9	Polyelectrolyte adsorption, interparticle forces, and colloidal aggregation. Soft Matter, 2014, 10, 2479.	1.2	284
10	Charging and Aggregation Properties of Carboxyl Latex Particles:Â Experiments versus DLVO Theory. Langmuir, 2000, 16, 2566-2575.	1.6	272
11	Experimental determination of colloid deposition rates and collision efficiencies in natural porous media. Water Resources Research, 1997, 33, 1129-1137.	1.7	257
12	Conductivity of water-in-oil microemulsions: a quantitative charge fluctuation model. The Journal of Physical Chemistry, 1989, 93, 314-317.	2.9	255
13	Strict self-assembly of polymetallic helicates: the concepts behind the semantics. Coordination Chemistry Reviews, 2005, 249, 705-726.	9.5	253
14	Charge Regulation in the Electrical Double Layer: Ion Adsorption and Surface Interactions. Langmuir, 2016, 32, 380-400.	1.6	237
15	Transport of in Situ Mobilized Colloidal Particles in Packed Soil Columns. Environmental Science & Technology, 1998, 32, 3562-3569.	4.6	219
16	Specific Ion Effects on Particle Aggregation Induced by Monovalent Salts within the Hofmeister Series. Langmuir, 2015, 31, 3799-3807.	1.6	167
17	Nonâ€Markovian activated rate processes: Comparison of current theories with numerical simulation data. Journal of Chemical Physics, 1986, 84, 1788-1794.	1.2	161
18	Effects of heat treatment on the aggregation and charging of Stöber-type silica. Journal of Colloid and Interface Science, 2005, 292, 139-147.	5.0	145

#	Article	IF	CITATIONS
19	Electrostatic Interaction of Colloidal Surfaces with Variable Charge. Journal of Physical Chemistry B, 1999, 103, 2918-2928.	1.2	144
20	Proton Binding Characteristics of Branched Polyelectrolytes. Macromolecules, 1997, 30, 2151-2158.	2.2	142
21	Acid-base properties of poly(propylene imine)dendrimers. Polymer, 1998, 39, 2657-2664.	1.8	131
22	Determination of nonlinear adsorption isotherms from column experiments: an alternative to batch studies. Environmental Science & amp; Technology, 1993, 27, 943-948.	4.6	130
23	Super-Stoichiometric Charge Neutralization in Particleâ^'Polyelectrolyte Systems. Langmuir, 2005, 21, 3688-3698.	1.6	130
24	Attractive and Repulsive Electrostatic Forces between Positively Charged Latex Particles in the Presence of Anionic Linear Polyelectrolytes. Journal of Physical Chemistry B, 2010, 114, 3170-3177.	1.2	130
25	Two percolation processes in microemulsions. The Journal of Physical Chemistry, 1988, 92, 206-211.	2.9	129
26	Imaging the Coil-to-Globule Conformational Transition of a Weak Polyelectrolyte by Tuning the Polyelectrolyte Charge Density. Nano Letters, 2004, 4, 149-152.	4.5	125
27	Interactions between solid surfaces with adsorbed polyelectrolytes of opposite charge. Current Opinion in Colloid and Interface Science, 2008, 13, 429-437.	3.4	123
28	Molecular dynamics study of an isomerizing diatomic in a Lennardâ€Jones fluid. Journal of Chemical Physics, 1988, 89, 4833-4847.	1.2	122
29	Calculation of dynamic friction on intramolecular degrees of freedom. The Journal of Physical Chemistry, 1987, 91, 4995-4998.	2.9	120
30	Exact Poisson-Boltzmann solution for the interaction of dissimilar charge-regulating surfaces. Physical Review E, 1999, 60, 7040-7048.	0.8	117
31	Colloid-Facilitated Transport of Strongly Sorbing Contaminants in Natural Porous Media:Â Mathematical Modeling and Laboratory Column Experimentsâ€. Environmental Science & Technology, 2005, 39, 6378-6386.	4.6	113
32	Aggregation and deposition kinetics of mobile colloidal particles in natural porous media. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 191, 179-188.	2.3	112
33	Heteroaggregation in Binary Mixtures of Oppositely Charged Colloidal Particles. Langmuir, 2006, 22, 1038-1047.	1.6	112
34	Ordered and Oriented Supramolecular n/p-Heterojunction Surface Architectures: Completion of the Primary Color Collection. Journal of the American Chemical Society, 2009, 131, 11106-11116.	6.6	111
35	Symmetry Numbers and Statistical Factors in Self-Assembly and Multivalency. Journal of Physical Chemistry B, 2007, 111, 12195-12203.	1.2	110
36	Electrostatic Stabilization of Charged Colloidal Particles with Adsorbed Polyelectrolytes of Opposite Charge. Langmuir, 2010, 26, 15109-15111.	1.6	109

#	Article	IF	CITATIONS
37	Aggregation of Colloidal Particles in the Presence of Oppositely Charged Polyelectrolytes:Â Effect of Surface Charge Heterogeneities. Langmuir, 2001, 17, 5225-5231.	1.6	105
38	Charging and Aggregation of Latex Particles by Oppositely Charged Dendrimers. Langmuir, 2004, 20, 7465-7473.	1.6	105
39	Origin of 1-pK and 2-pK Models for Ionizable Waterâ^'Solid Interfaces. Langmuir, 1997, 13, 2608-2613.	1.6	103
40	Regularized Least-Squares Methods for the Calculation of Discrete and Continuous Affinity Distributions for Heterogeneous Sorbents. Environmental Science & Technology, 1995, 29, 413-425.	4.6	101
41	Adsorption of Poly(amido amine) (PAMAM) Dendrimers on Silica:  Importance of Electrostatic Three-Body Attraction. Langmuir, 2008, 24, 465-473.	1.6	99
42	Atomic Force Microscopy Study of the Adsorption and Electrostatic Self-Organization of Poly(amidoamine) Dendrimers on Mica. Langmuir, 2004, 20, 3264-3270.	1.6	98
43	Measurement of Absolute Coagulation Rate Constants for Colloidal Particles: Comparison of Single and Multiparticle Light Scattering Techniques. Journal of Colloid and Interface Science, 1997, 192, 463-470.	5.0	95
44	Interaction between Charged Surfaces on the Poissonâ [^] Boltzmann Level:Â The Constant Regulation Approximation. Journal of Physical Chemistry B, 2004, 108, 19467-19475.	1.2	93
45	Importance of Charge Regulation in Attractive Double-Layer Forces between Dissimilar Surfaces. Physical Review Letters, 2010, 104, 228301.	2.9	89
46	Attractive Forces between Charged Colloidal Particles Induced by Multivalent Ions Revealed by Confronting Aggregation and Direct Force Measurements. Journal of Physical Chemistry Letters, 2013, 4, 648-652.	2.1	89
47	Aggregation of Negatively Charged Colloidal Particles in the Presence of Multivalent Cations. Langmuir, 2014, 30, 733-741.	1.6	88
48	Simple thermodynamics for unravelling sophisticated self-assembly processes. Dalton Transactions, 2006, , 1473.	1.6	87
49	Poisson–Boltzmann description of interaction forces and aggregation rates involving charged colloidal particles in asymmetric electrolytes. Journal of Colloid and Interface Science, 2013, 406, 111-120.	5.0	87
50	Ionâ~'Ion Correlation and Charge Reversal at Titrating Solid Interfaces. Langmuir, 2009, 25, 7209-7213.	1.6	85
51	Charging and Aggregation of Positively Charged Latex Particles in the Presence of Anionic Polyelectrolytesâ€. Journal of Physical Chemistry B, 2007, 111, 8626-8633.	1.2	82
52	Synthesis and Protonation Behavior of Comblike Poly(ethyleneimine). Macromolecules, 2003, 36, 2500-2507.	2.2	80
53	Investigating forces between charged particles in the presence of oppositely charged polyelectrolytes with the multi-particle colloidal probe technique. Advances in Colloid and Interface Science, 2012, 179-182, 85-98.	7.0	79
54	Proton binding by linear, branched, and hyperbranched polyelectrolytes. Polymer, 2010, 51, 5649-5662.	1.8	78

#	Article	IF	CITATIONS
55	Release of colloidal particles in natural porous media by monovalent and divalent cations. Journal of Contaminant Hydrology, 2006, 87, 155-175.	1.6	77
56	Reaction dynamics in the low pressure regime: The Kramers model and collisional models of molecules with many degrees of freedom. Journal of Chemical Physics, 1985, 82, 794-799.	1.2	76
57	Probing the validity of the Derjaguin approximation for heterogeneous colloidal particles. Physical Chemistry Chemical Physics, 2006, 8, 2531.	1.3	75
58	Ion binding to polyelectrolytes. Current Opinion in Colloid and Interface Science, 2006, 11, 280-289.	3.4	75
59	Programming Heteropolymetallic Lanthanide Helicates: Thermodynamic Recognition of Different Metal Ions Along the Strands. Chemistry - A European Journal, 2004, 10, 1091-1105.	1.7	72
60	From micelles to microemulsion droplets: Size distributions, shape fluctuations, and interfacial tensions. Journal of Chemical Physics, 1989, 91, 6268-6281.	1.2	71
61	Deposition of nanosized latex particles onto silica and cellulose surfaces studied by optical reflectometry. Journal of Colloid and Interface Science, 2006, 303, 460-471.	5.0	67
62	Thin adsorbed films of a strong cationic polyelectrolyte on silica substrates. Journal of Colloid and Interface Science, 2007, 309, 28-35.	5.0	66
63	Ionization Processes and Proton Binding in Polyprotic Systems: Small Molecules, Proteins, Interfaces, and Polyelectrolytes. , 2001, , 99-339.		65
64	Attractive Electrostatic Forces between Identical Colloidal Particles Induced by Adsorbed Polyelectrolytes. Journal of Physical Chemistry B, 2009, 113, 8458-8461.	1.2	63
65	Colloidal Stability in Asymmetric Electrolytes: Modifications of the Schulze–Hardy Rule. Langmuir, 2017, 33, 1695-1704.	1.6	63
66	Forces between colloidal particles in aqueous solutions containing monovalent and multivalent ions. Current Opinion in Colloid and Interface Science, 2017, 27, 9-17.	3.4	63
67	Long-Term Release Kinetics of Colloidal Particles from Natural Porous Media. Environmental Science & Technology, 1999, 33, 4054-4060.	4.6	62
68	Structure of Adsorbed Polyelectrolyte Monolayers Investigated by Combining Optical Reflectometry and Piezoelectric Techniques. Langmuir, 2012, 28, 5642-5651.	1.6	62
69	Interaction Forces, Heteroaggregation, and Deposition Involving Charged Colloidal Particles. Journal of Physical Chemistry B, 2014, 118, 6346-6355.	1.2	62
70	A Simple Thermodynamic Model for Quantitatively Addressing Cooperativity in Multicomponent Self-Assembly Processes—Part 1: Theoretical Concepts and Application to Monometallic Coordination Complexes and Bimetallic Helicates Possessing Identical Binding Sites. Chemistry - A European Journal, 2005, 11, 5217-5226.	1.7	61
71	Ising Models of Polyprotic Acids and Bases. The Journal of Physical Chemistry, 1994, 98, 6038-6045.	2.9	60
72	Affinity Distribution Description of Competitive Ion Binding to Heterogeneous Materials. Langmuir, 1996, 12, 6127-6137.	1.6	60

#	Article	IF	CITATIONS
73	Molecular mass dependence of adsorbed amount and hydrodynamic thickness of polyelectrolyte layers. Physical Chemistry Chemical Physics, 2011, 13, 12716.	1.3	59
74	Diffusional deposition of colloidal particles: electrostatic interaction and size polydispersity effects. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 165, 79-93.	2.3	58
75	Observation of the Mobility Maximum Predicted by the Standard Electrokinetic Model for Highly Charged Amidine Latex Particles. Langmuir, 2000, 16, 5209-5212.	1.6	55
76	Measurements of dispersion forces between colloidal latex particles with the atomic force microscope and comparison with Lifshitz theory. Journal of Chemical Physics, 2014, 140, 104906.	1.2	55
77	Particle aggregation mechanisms in ionic liquids. Physical Chemistry Chemical Physics, 2014, 16, 9515-9524.	1.3	55
78	Dispersion forces acting between silica particles across water: influence of nanoscale roughness. Nanoscale Horizons, 2016, 1, 325-330.	4.1	55
79	Predicting Aggregation Rates of Colloidal Particles from Direct Force Measurements. Journal of Physical Chemistry B, 2013, 117, 11853-11862.	1.2	54
80	Predicting Multicomponent Adsorption and Transport of Fluoride at Variable pH in a Goethiteâ^'Silica Sand System. Environmental Science & Technology, 1996, 30, 481-488.	4.6	53
81	Electric double layer interaction of ionizable surfaces: Charge regulation for arbitrary potentials. Journal of Chemical Physics, 1999, 111, 382-385.	1.2	53
82	A Simple Thermodynamic Model for Quantitatively Addressing Cooperativity in Multicomponent Self-Assembly Processes—Part 2: Extension to Multimetallic Helicates Possessing Different Binding Sites. Chemistry - A European Journal, 2005, 11, 5227-5237.	1.7	53
83	Forces between solid surfaces in aqueous electrolyte solutions. Advances in Colloid and Interface Science, 2020, 275, 102078.	7.0	53
84	Shortcomings of current theories of nonâ€Markovian activated rate processes. Journal of Chemical Physics, 1985, 83, 3172-3174.	1.2	52
85	Direct Force Measurements between Cellulose Surfaces and Colloidal Silica Particles. Biomacromolecules, 2005, 6, 3057-3066.	2.6	52
86	Destabilization of Colloidal Suspensions by Multivalent Ions and Polyelectrolytes: From Screening to Overcharging. Langmuir, 2012, 28, 6211-6215.	1.6	52
87	Measurement of Sorption Isotherms with Flow-Through Reactors. Environmental Science & amp; Technology, 1995, 29, 2317-2321.	4.6	51
88	Ionization Equilibria and Conformational Transitions in Polyprotic Molecules and Polyelectrolytes. Journal of Physical Chemistry B, 2006, 110, 10937-10950.	1.2	51
89	Mechanism of Chitosan Adsorption on Silica from Aqueous Solutions. Langmuir, 2014, 30, 4980-4988.	1.6	51
90	A Simple Thermodynamic Model for Rationalizing the Formation of Self-Assembled Multimetallic Edifices:  Application to Triple-Stranded Helicates. Journal of the American Chemical Society, 2004, 126, 11589-11601.	6.6	50

#	Article	IF	CITATIONS
91	Aggregation of Colloidal Particles in the Presence of Multivalent Co-Ions: The Inverse Schulze–Hardy Rule. Langmuir, 2015, 31, 6610-6614.	1.6	50
92	Charge regulation effects on electrostatic patch-charge attraction induced by adsorbed dendrimers. Physical Chemistry Chemical Physics, 2010, 12, 4863.	1.3	49
93	Interpretation of Competitive Adsorption Isotherms in Terms of Affinity Distributions. Journal of Colloid and Interface Science, 1997, 191, 247-255.	5.0	48
94	Predicting the Wettability of Quartz Surfaces Exposed to Dense Nonaqueous Phase Liquids. Environmental Science & Technology, 2001, 35, 2207-2213.	4.6	47
95	Binding of Metal Ions to Polyelectrolytes and Their Oligomeric Counterparts:Â An Application of a Generalized Potts Modelâ€. Journal of Physical Chemistry B, 2001, 105, 6666-6674.	1.2	46
96	Topologically Matching Supramolecular n/pâ€Heterojunction Architectures. Angewandte Chemie - International Edition, 2009, 48, 6461-6464.	7.2	46
97	Statistical mechanical approach to competitive binding of metal ions to multi-center receptors. Dalton Transactions, 2004, , 4096-4105.	1.6	45
98	Electrostatic Double Layer Forces in the Case of Extreme Charge Regulation. Journal of Physical Chemistry B, 2008, 112, 10795-10799.	1.2	44
99	Adsorption of monovalent and divalent cations on planar water-silica interfaces studied by optical reflectivity and Monte Carlo simulations. Journal of Chemical Physics, 2011, 135, 064701.	1.2	44
100	Electric double-layer potentials and surface regulation properties measured by colloidal-probe atomic force microscopy. Physical Review E, 2014, 90, 012301.	0.8	44
101	Tuneable Intramolecular Intermetallic Interactions as a New Tool for Programming Linear Heterometallic 4fâ~'4f Complexes. Inorganic Chemistry, 2007, 46, 9312-9322.	1.9	43
102	Adsorption of poly(l-lysine) on silica probed by optical reflectometry. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 360, 20-25.	2.3	43
103	Affinity distributions and acid-base properties of homogeneous and heterogeneous sorbents: exact results versus experimental data inversion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1996, 107, 285-296.	2.3	42
104	Linear Polynuclear Helicates as a Link between Discrete Supramolecular Complexes and Programmed Infinite Polymetallic Chains. Chemistry - A European Journal, 2008, 14, 2994-3005.	1.7	42
105	Surfactant monolayer rigidities from Kerr effect measurements on microemulsions. Chemical Physics Letters, 1989, 157, 457-461.	1.2	41
106	Response of Adsorbed Polyelectrolyte Monolayers to Changes in Solution Composition. Langmuir, 2012, 28, 17506-17516.	1.6	41
107	Release and transport of colloidal particles in natural porous media: 2. Experimental results and effects of ligands. Water Resources Research, 2001, 37, 571-582.	1.7	40
108	Nano-patterning of solid substrates by adsorbed dendrimers. Chemical Communications, 2007, , 266-268.	2.2	40

#	Article	IF	CITATIONS
109	Novel self-associative and multiphasic nanostructured soft carriers based on amphiphilic hyaluronic acid derivatives. Carbohydrate Polymers, 2012, 87, 444-451.	5.1	40
110	Adsorption of polyelectrolytes to like-charged substrates induced by multivalent counterions as exemplified by poly(styrene sulfonate) and silica. Physical Chemistry Chemical Physics, 2015, 17, 10348-10352.	1.3	39
111	A Cluster Expansion Method for the Complete Resolution of Microscopic Ionization Equilibria from NMR Titrations. Analytical Chemistry, 2000, 72, 3272-3279.	3.2	38
112	Interaction forces and molecular adhesion between pre-adsorbed poly(ethylene imine) layers. Journal of Colloid and Interface Science, 2006, 296, 496-506.	5.0	37
113	Stability of negatively charged latex particles in the presence of a strong cationic polyelectrolyte at elevated ionic strengths. Journal of Colloid and Interface Science, 2010, 347, 202-208.	5.0	37
114	Probing Nanometer-Thick Polyelectrolyte Layers Adsorbed on Oppositely Charged Particles by Dynamic Light Scattering. Macromolecules, 2010, 43, 9108-9116.	2.2	37
115	Charge Reversal of Sulfate Latex Particles by Adsorbed Linear Poly(ethylene imine) Probed by Multiparticle Colloidal Probe Technique. Journal of Physical Chemistry B, 2011, 115, 9098-9105.	1.2	37
116	Accurate Predictions of Forces in the Presence of Multivalent lons by Poisson–Boltzmann Theory. Langmuir, 2014, 30, 4551-4555.	1.6	37
117	Forces between Negatively Charged Interfaces in the Presence of Cationic Multivalent Oligoamines Measured with the Atomic Force Microscope. Journal of Physical Chemistry C, 2015, 119, 15482-15490.	1.5	37
118	Heteroaggregation of oppositely charged particles in the presence of multivalent ions. Physical Chemistry Chemical Physics, 2017, 19, 15160-15171.	1.3	36
119	Colloidal Particles at Water-Glass Interface: Deposition Kinetics and Surface Heterogeneity. Journal of Colloid and Interface Science, 1998, 206, 314-321.	5.0	35
120	Transition from Completely Reversible to Irreversible Adsorption of Poly(amido amine) Dendrimers on Silica. Langmuir, 2009, 25, 2928-2934.	1.6	35
121	Charging and aggregation of negatively charged colloidal latex particles in the presence of multivalent oligoamine cations. Journal of Colloid and Interface Science, 2013, 392, 34-41.	5.0	35
122	Phenomenological theories of globular microemulsions. Advances in Colloid and Interface Science, 1992, 37, 195-217.	7.0	34
123	Modeling of Heavy Metal Transport in a Contaminated Soil. Journal of Environmental Quality, 1994, 23, 1239-1248.	1.0	34
124	Interaction and Structure of Surfaces Coated by Poly(vinyl amines) of Different Line Charge Densities. Journal of Physical Chemistry B, 2008, 112, 14609-14619.	1.2	34
125	Charging and stability of anionic latex particles in the presence of linear poly(ethylene imine). Journal of Colloid and Interface Science, 2011, 360, 580-585.	5.0	34
126	Interaction Forces and Aggregation Rates of Colloidal Latex Particles in the Presence of Monovalent Counterions. Journal of Physical Chemistry B, 2015, 119, 8184-8193.	1.2	34

#	Article	IF	CITATIONS
127	Charging and aggregation of latex particles in aqueous solutions of ionic liquids: towards an extended Hofmeister series. Physical Chemistry Chemical Physics, 2016, 18, 7511-7520.	1.3	34
128	Convective transport of acids and bases in porous media. Water Resources Research, 1994, 30, 2937-2944.	1.7	33
129	Determination of light-scattering form factors of latex particle dimers with simultaneous static and dynamic light scattering in an aggregating suspension. Physical Review E, 1997, 56, 6945-6953.	0.8	33
130	Influence of alkali metal counterions on the charging behavior of poly(acrylic acid). Polymer, 2009, 50, 3950-3954.	1.8	31
131	Structure of an Adsorbed Polyelectrolyte Monolayer on Oppositely Charged Colloidal Particles. Langmuir, 2009, 25, 4864-4867.	1.6	31
132	Large Mechanical Response of Single Dendronized Polymers Induced by Ionic Strength. Angewandte Chemie - International Edition, 2010, 49, 4250-4253.	7.2	31
133	Influence of the Degree of Ionization and Molecular Mass of Weak Polyelectrolytes on Charging and Stability Behavior of Oppositely Charged Colloidal Particles. Langmuir, 2011, 27, 9270-9276.	1.6	31
134	Direct measurements of forces between different charged colloidal particles and their prediction by the theory of Derjaguin, Landau, Verwey, and Overbeek (DLVO). Journal of Chemical Physics, 2013, 138, 234705.	1.2	31
135	Long-ranged and soft interactions between charged colloidal particles induced by multivalent coions. Soft Matter, 2015, 11, 1562-1571.	1.2	31
136	Forces between silica particles in the presence of multivalent cations. Journal of Colloid and Interface Science, 2016, 472, 108-115.	5.0	31
137	Solution of the Poisson-Boltzmann equation for surface excesses of ions in the diffuse layer at the oxide-electrolyte interface. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1983, 150, 325-337.	0.3	30
138	Schulze-Hardy rule revisited. Colloid and Polymer Science, 2020, 298, 961-967.	1.0	29
139	The influence of intramolecular vibrational relaxation on the pressure dependence of unimolecular rate constants. Journal of Chemical Physics, 1986, 85, 146-149.	1.2	28
140	Influence of the Secondary Interaction Energy Minimum on the Early Stages of Colloidal Aggregation. Journal of Colloid and Interface Science, 2000, 225, 460-465.	5.0	28
141	Release and transport of colloidal particles in natural porous media: 1. Modeling. Water Resources Research, 2001, 37, 559-570.	1.7	27
142	Long-Ranged Attractive Forces Induced by Adsorbed Dendrimers: Direct Force Measurements and Computer Simulations. Langmuir, 2009, 25, 12435-12438.	1.6	27
143	Effective Charge of Adsorbed Poly(amidoamine) Dendrimers from Direct Force Measurements. Macromolecules, 2009, 42, 1749-1758.	2.2	27
144	Probing Colloidal Particle Aggregation by Light Scattering. Chimia, 2013, 67, 772.	0.3	26

#	Article	IF	CITATIONS
145	Influence of Solvent Quality on the Force Response of Individual Poly(styrene) Polymer Chains. ACS Macro Letters, 2017, 6, 1052-1055.	2.3	26
146	Unexpectedly Large Decay Lengths of Double-Layer Forces in Solutions of Symmetric, Multivalent Electrolytes. Journal of Physical Chemistry B, 2019, 123, 1733-1740.	1.2	26
147	Probing effects of polymer adsorption in colloidal particle suspensions by light scattering as relevant for the aquatic environment: An overview. Science of the Total Environment, 2015, 535, 131-140.	3.9	25
148	Interplay between Depletion and Double-Layer Forces Acting between Charged Particles in Solutions of Like-Charged Polyelectrolytes. Physical Review Letters, 2016, 117, 088001.	2.9	25
149	Generalized reactive flux method for numerical evaluation of rate constants. Journal of Chemical Physics, 1990, 92, 5307-5310.	1.2	24
150	Affinity Distributions of Polyampholytes with Interacting Acid-Base Groups. Langmuir, 1994, 10, 2863-2865.	1.6	24
151	Multicomponent Transport of Sulfate in a Goethiteâ^'Silica Sand System at Variable pH and Ionic Strength. Environmental Science & Technology, 1999, 33, 3443-3450.	4.6	24
152	Activated barrier crossing for many degrees of freedom: Corrections to the low friction Kramers result. Journal of Chemical Physics, 1987, 86, 2444-2446.	1.2	23
153	Cation transport in natural porous media on laboratory scale: multicomponent effects. Journal of Contaminant Hydrology, 1994, 16, 319-337.	1.6	23
154	scyllo â€inositol Pentakisphosphate as an Analogue of myo â€inositol 1,3,4,5,6â€Pentakisphosphate: Chemical Synthesis, Physicochemistry and Biological Applications. ChemBioChem, 2006, 7, 1114-1122.	1.3	23
155	Ion-Specific Responsiveness of Polyamidoamine (PAMAM) Dendrimers Adsorbed on Silica Substrates. Macromolecules, 2012, 45, 3919-3927.	2.2	23
156	Aggregation of Colloidal Particles in the Presence of Hydrophobic Anions: Importance of Attractive Non-DLVO Forces. Langmuir, 2018, 34, 14368-14377.	1.6	22
157	Ionization properties of interfaces and linear polyelectrolytes: a discrete charge Ising model. Physica A: Statistical Mechanics and Its Applications, 2001, 298, 1-23.	1.2	21
158	Inframolecular Protonation Process of Norbadione A:  Influence of the Ionic Environment and Stereochemical Consequences. Journal of the American Chemical Society, 2005, 127, 1323-1333.	6.6	21
159	Light-scattering form factors of asymmetric particle dimers from heteroaggregation experiments. Journal of Chemical Physics, 2005, 123, 064709.	1.2	21
160	Energy and angular momentum diffusion theory of dissociation rate constants. Journal of Chemical Physics, 1986, 84, 4327-4331.	1.2	20
161	Conformational Changes of Polyamidoamine (PAMAM) Dendrimers Adsorbed on Silica Substrates. Macromolecules, 2011, 44, 5069-5071.	2.2	19
162	Direct force measurements between silica particles in aqueous solutions of ionic liquids containing 1-butyl-3-methylimidazolium (BMIM). Physical Chemistry Chemical Physics, 2015, 17, 16553-16559.	1.3	19

#	Article	IF	CITATIONS
163	Depletion and double layer forces acting between charged particles in solutions of like-charged polyelectrolytes and monovalent salts. Soft Matter, 2017, 13, 3284-3295.	1.2	19
164	Numerical simulation of rate constants for a two degree of freedom system in the weak collision limit. Journal of Chemical Physics, 1987, 86, 4296-4297.	1.2	18
165	Polydispersity in dilute microemulsions: A consequence of the monomer-droplet equilibrium. Journal of Colloid and Interface Science, 1989, 131, 366-381.	5.0	18
166	Decomposing Bridging Adhesion between Polyelectrolyte Layers into Single Molecule Contributions. Langmuir, 2006, 22, 10880-10884.	1.6	18
167	Protonation of silica particles in the presence of a strong cationic polyelectrolyte. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 339, 20-25.	2.3	18
168	Interactions between Individual Charged Dendronized Polymers and Surfaces. Macromolecules, 2013, 46, 3603-3610.	2.2	18
169	Mechanically induced cis-to-trans isomerization of carbon–carbon double bonds using atomic force microscopy. Physical Chemistry Chemical Physics, 2016, 18, 31202-31210.	1.3	18
170	Collisional model for diatomic recombination reactions. The Journal of Physical Chemistry, 1985, 89, 3994-3998.	2.9	17
171	Measurement of heteroaggregation rate constants by simultaneous static and dynamic light scattering. Physical Chemistry Chemical Physics, 2005, 7, 1464.	1.3	17
172	Aggregation and charging of sulfate and amidine latex particles in the presence of oxyanions. Journal of Colloid and Interface Science, 2018, 524, 456-464.	5.0	17
173	Highly-sensitive reflectometry setup capable of probing the electrical double layer on silica. Sensors and Actuators B: Chemical, 2010, 151, 250-255.	4.0	16
174	Chromatographic Charge Density Determination of Materials with Low Surface Area. Langmuir, 1994, 10, 855-860.	1.6	15
175	Charging and Aggregation of Positively Charged Colloidal Latex Particles in Presence of Multivalent Polycarboxylate Anions. Zeitschrift Fur Physikalische Chemie, 2012, 226, 597-612.	1.4	15
176	Single-Molecule Force Measurements by Nano-Handling of Individual Dendronized Polymers. ACS Nano, 2014, 8, 2237-2245.	7.3	15
177	Recording stretching response of single polymer chains adsorbed on solid substrates. Polymer, 2016, 102, 350-362.	1.8	15
178	Nanometer-ranged attraction induced by multivalent ions between similar and dissimilar surfaces probed using an atomic force microscope (AFM). Physical Chemistry Chemical Physics, 2016, 18, 8739-8751.	1.3	15
179	Attractive non-DLVO forces induced by adsorption of monovalent organic ions. Physical Chemistry Chemical Physics, 2018, 20, 158-164.	1.3	15
180	Ising models and acidâ€base properties of weak polyelectrolytes. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1996, 100, 764-769.	0.9	14

#	Article	IF	CITATIONS
181	Persistence Length of Poly(vinyl amine): Quantitative Image Analysis versus Single Molecule Force Response. Macromolecules, 2018, 51, 3632-3639.	2.2	14
182	Measuring Inner Layer Capacitance with the Colloidal Probe Technique. Colloids and Interfaces, 2018, 2, 65.	0.9	14
183	Metal loading of lanthanidopolymers driven by positive cooperativity. Dalton Transactions, 2015, 44, 13250-13260.	1.6	13
184	Shape fluctuations and polarizability of droplets. Chemical Physics Letters, 1988, 147, 195-202.	1.2	12
185	Effective Charge of Adsorbed Poly(amido amine) Dendrimers: Transition from Heterogeneous to Homogeneous Charge Distribution. Macromolecules, 2010, 43, 1129-1136.	2.2	12
186	The persistence length of adsorbed dendronized polymers. Nanoscale, 2016, 8, 13498-13506.	2.8	12
187	Interactions between similar and dissimilar charged interfaces in the presence of multivalent anions. Physical Chemistry Chemical Physics, 2018, 20, 9436-9448.	1.3	12
188	Stability ratios for doublet formation and for deposition of colloidal particles with arbitrary interaction potentials: An analytical approximation. Langmuir, 1993, 9, 2247-2249.	1.6	11
189	Influence of the distance between ionizable groups on the protonation behavior of various hexaamines. Physical Chemistry Chemical Physics, 1999, 1, 5649-5652.	1.3	11
190	Microscopic ionization mechanism of inositol tetrakisphosphates. Physical Chemistry Chemical Physics, 2004, 6, 1144.	1.3	11
191	Resolution of Microscopic Protonation Enthalpies of Polyprotic Molecules by Means of Cluster Expansions. Journal of Physical Chemistry B, 2012, 116, 4300-4309.	1.2	11
192	Resolution of Microscopic Protonation Mechanisms in Polyprotic Molecules. Chimia, 2002, 56, 695-701.	0.3	10
193	Influence of ligand-receptor interactions on force-extension behavior within the freely jointed chain model. Physical Review E, 2017, 96, 062501.	0.8	10
194	Quantitative description of multi-component reactive transport in porous media: An empirical approach. Transport in Porous Media, 1996, 25, 193-204.	1.2	9
195	Protonation of carboxyl latex particles in the presence of a strong cationic polyelectrolyte. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 294, 174-180.	2.3	9
196	Heteroaggregation and Homoaggregation of Latex Particles in the Presence of Alkyl Sulfate Surfactants. Colloids and Interfaces, 2020, 4, 52.	0.9	9
197	Measuring slow heteroaggregation rates in the presence of fast homoaggregation. Journal of Colloid and Interface Science, 2020, 566, 143-152.	5.0	9
198	Zipper and Layer-by-Layer Assemblies of Artificial Photosystems Analyzed by Combining Optical and Piezoelectric Surface Techniques. Langmuir, 2011, 27, 7213-7221.	1.6	8

#	Article	IF	CITATIONS
199	Adsorption and surface-induced precipitation of poly(acrylic acid) on calcite revealed with atomic force microscopy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 390, 225-230.	2.3	8
200	Forces between interfaces in concentrated nanoparticle suspensions and polyelectrolyte solutions. Current Opinion in Colloid and Interface Science, 2021, 55, 101482.	3.4	8
201	Classical theories of reaction dynamics: Transition state theory, spatial diffusion controlled reactions, and the energy diffusion limit. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 2717-2723.	1.7	7
202	Structural and Double Layer Forces between Silica Surfaces in Suspensions of Negatively Charged Nanoparticles. Langmuir, 2020, 36, 14443-14452.	1.6	6
203	Towards a quantitative description of ionization properties of linear and branched polyelectrolytes. , 1998, , 142-152.		5
204	In situ Imaging of Single Polyelectrolyte Chains with the Atomic Force Microscope. Chimia, 2019, 73, 17.	0.3	5
205	Structuring of colloidal silica nanoparticle suspensions near water–silica interfaces probed by specular neutron reflectivity. Physical Chemistry Chemical Physics, 2020, 22, 6449-6456.	1.3	5
206	Heteroaggregation between Charged and Neutral Particles. Langmuir, 2020, 36, 5303-5311.	1.6	5
207	Modeling of Competitive Ion Binding to Heterogeneous Materials with Affinity Distributions. , 1998, , 467-482.		4
208	Probing adsorption of sodium poly(acrylate) at the calcite–water interface by ellipsometry. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 384, 17-22.	2.3	4
209	The intrinsic view of ionization equilibria of polyprotic molecules. New Journal of Chemistry, 2014, 38, 5679-5685.	1.4	4
210	Thickness of the particle-free layer near charged interfaces in suspensions of like-charged nanoparticles. Soft Matter, 2021, 17, 6212-6224.	1.2	4
211	Colloid Facilitated Transport in Natural Porous Media: Fundamental Phenomena and Modelling. , 2007, , 3-27.		4
212	Adsorption and Self-Organization of Dendrimers at Water–Solid Interfaces. Chimia, 2009, 63, 279.	0.3	3
213	Oscillatory structural forces between charged interfaces in solutions of oppositely charged polyelectrolytes. Soft Matter, 2020, 16, 9662-9668.	1.2	3
214	Exploring Forces between Individual Colloidal Particles with the Atomic Force Microscope. Chimia, 2012, 66, 214.	0.3	2
215	Quantitative Nano-characterization of Polymers Using Atomic Force Microscopy. Chimia, 2017, 71, 195.	0.3	2
216	Particle Deposition to Silica Surfaces Functionalized with Cationic Polyelectrolytes. Colloids and Interfaces, 2021, 5, 26.	0.9	1

#	Article	IF	CITATIONS
217	Reply to the preceding comment by J.A. Schwarz. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1997, 122, 267-268.	2.3	0
218	Towards Ãngström Resolution with Dynamic Light Scattering. Chimia, 2011, 65, 439-439.	0.3	0
219	Stabilization of Aqueous Colloidal Dispersions: Electrostatic and Steric Forces. , 0, , 6840-6849.		0